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1.
solution. O

Let {v1,...,v,} and {w1,...,w_p} be collections of vectors in an n-dimensional vector
space V. Let vy denote v;, A---Awv;, for I = {i1,... i} C {1,...,q}, and similarly for w;.

Now Let us assume that
Zaﬂ)] = Zb]’w].
I J

Then we wish to show that

f*zalvl = f*ZwaJ-
I J

Without loss of generality we may assume that the v; are a basis and ¢ = n (while the w;
need not be). Because of this, we may express w; = Z;'l:1 Tijvj, © = 1,...,p. Then we

know that
Z arvy = Z byl rvr
I J.L

where T = > cg, sgn (1, [n])sgn (L, [g])sgn (0)tj,1,q,, * Lyl > and sgn (I, [n]) denotes
the sign of the permutation that takes the j to ¢; for 1 < j < k, and puts the remaining
numbers in increasing order. But then ay =) ;0,7 . Now we note

Zajf*(vf) = Z bJTJ,If*(UI)'
1

1,J
But we can pull the coefficients T'; ;1 into the push forward, to get that this is

n n
:Zbe Zlellvll ARV ZTJ’“Z’“
J

=1 =1

= Z byfe(wy).
J



As for the second property, we note that by definition w(wy A -+ - wy) = w(wy, ..., wy), and
we note that

f*w(vla oo avk) = w(f(vl)v sy f(Uk))
=w(f(vr) A--- A f(vk))
= w(fi(vi A~ Awg)).
2.
solution. Let wy = v1,..., Wy = vy, denote a basis of W and vp,41,...,v, complete these

to a basis of V. First to show that the map ¢, is injective: suppose > ; ayi«(wr) = 0, then
> ;arvr = 0 but the vy are a basis of A\, V, so ay =0, and ) _; aywy = 0.

Now for surjectivity of ¢*. Let wq,...,w,, denote a dual basis of wi,...,w,,, and let
vi,...,V, denote a basis dual to the v;. Then consider t*(vy) for I C [m] C [n].

S (wiy, .., wi ) = vi(u(wy,), ..., l(wi,))

=vr(Viy,. .., i)

{1 i 1= {iy,... 0}

0 otherwise.

But in this case «*v; = wy, and I was arbitrary, so (* is surjective. O
3.
solution. 1. Let w; be a (not necessarily standard) basis for R**. Then by the condition,

we have that f*(w1) A f*(w2) = w1 Awg). If we write f*w; = f; + ¢; for f; €
span {w1,ws}, and g; € span {ws, w4}, then

Jrw)Af(w)=finfo+ fingz+91 A fat g1 A go.

All of the terms are linearly independent, and excluding possibly fi A fa are linearly
independent from w; A wg, hence they are 0. But if two one forms o and 3 wedge
to 0, then they are scalar multiples of one another. But the f; and g; are in linearly
independent spaces, and so the g; are 0.

But then f*span {w;,w;} C span {w;,w;} =: P;; for all i # j.

2. If we intersect Pjo and Po3 we get Rwe, but because f*Piys = Pig and f*Pos = Pag
we get that f*ws = Awy. But our choice of basis was arbitrary, so we have that
f*w = Alw for all w. Now suppose n and w are linearly independent then if f*w = Aw
and f*n = un, and f*(w+n) =v(w+n). But f*(w+n) = Aw+vn, hence p =v = A,
and f* = Aid. If this is the case then we have that f*n A f*w = A>n Aw = n Aw from
which we get that A = +1.



3. f = +id.

4. Here is a more algebraic proof that uses the idea of an annihilator. Let e1,...,eq be
an arbitrary basis with dual €1,...,e4. Let o be a 2-form, and define the annihilator
of a,

Aa) := {v e R* : Yw € R a(v,w) = 0}.
That is A(«) is the set of vectors which always go to 0. It is trivial to see that A(«)
is a linear subspace for all a.

Now we make the following claim: for ¢, j, k, [ any permutation of the numbers 1, 2, 3, 4,
that
A(e; Nej) = span {eg, €;.

We show the case i = 1,5 = 2mk = 3,1 = 4. Consider

1 Nea(aer + Bea, —fBer + aer) = a’e1(er)ea(e2) — B(—B)e2(e)er(er)
= o’ + 3,

which is nonzero for ae; + fes not equal to 0. Then trivially e3 and e4 are in
A(eq Aeg), but then they span a two dimensional subspace span {es, eq} C A(e1 Ae2)
which is complementary to span {ej,es}, which intersects A(e; A €2) only at 0, so
A(e1 AN eg) = span {es, eq}.

Now let because f*(«) = «, for any two form, we know that f(A(«)) C A(a) for any
two form. Now consider that e; € A(e;Aej) fori # 1 # j. But then f(e1) € A(eiAgj).
But the only vectors that are in

A(ea Ne3) N A(eg Aeg) N A(eq N ea),

are those of the form Aej. Hence f(e1) = Aej. But our choice of basis was arbitrary,
so f(v) = Ao for every v, so every vector is an eigenvector. Then proceed as before.

O

4.
solution. 1. Let f: V¥ — W be alternating and multilinear. Define SNV — W by
fi A---Avg) == f(v1,...,v,). Before we can say that this defines a unique map, it
is worth mentioning that it actually defines a map. To do this we will show that for
a given basis, ej,..., e, the map defined in that way extends to all k-vectors. This

will show uniqueness of the map, as the k-vectors ey define a basis for A, V. Let
v; = Zj Aij€j. Then

Uikl = Z Alk], 7€
J



where ap ; are defined as in the solution to problem 1. Then by a linear extension,
we have that

flog) = Z 1.0 (er)
_Z Jf 8]1,...,6jk).

Now we can apply multilinearity of f to arrive at

I(vik) Zaljlejl""’zakjkejk)
Ji
= f(’l)l, e ,’Uk>.

Hence the map is well defined and uniquely defined by extending linearly from a basis.

2. First we construct the multilinear map 9 : V¥ — A, V 9 : (v1,...,0%) — vi A+ Avg.
Then by the unique lifting property of X and A, V, we have maps 6 : A\, V — X,
and ¥ : X — A, V. But with these we have that § o =6, But ¥ 00 =¥, so

Yoot =1
But ¥ is surjective onto a basis of A, V', so ¥ o6 =id.

Similarly the map 8 od o0 = 6. But id : X — X is the unique lift of the multilinear
map 6, so § o =id. Hence X = A,V
O

5.

solution. Suppose that f is invertible otherwise both sides of the equation are 0. Here it is
sufficient to examine simple functions. Let u = ), a;xg,. Then

/uofJf|d£":/ 3" X o fldet f| dL”
R" R o

- /anxf-l(Eiﬂdetfl acr
= Zallf ;)| det f|

= Zai\Ez‘Hdetf”Hdetﬂ
= Zai|E¢\

= / uwdl™.
F(R™)



6.

solution. A covering map 7 : B — X is an open map between connected spaces for which
for every z € X, there is a U C X containing x, such that 7=1(U) = U;U;, and 7|U; is a
homeomorphism.

1. The set o([0, 1]) is compact, so it may be covered by a finite collection of covering sets
U®. Then every point t € [0, 1] has a neighbourhood [t — &, t + &;] contained entirely
in 01 (U?). Cover I with the sets (t —¢&y,t+¢;), then there is a finite subcover (;, s;).
Arranging eng points in order from least to largest and relabeling 7;, we get intervals
[Ti, Tit1] whose image under o is contained entirely in U i for some 1.

Now define inductively ~; : [, 7i+1] — X, to be

Yi(t) = (fIUF) o a(t),

where U* contains o([r;,7;11) and UF contains v;_1(7;). Then set 4o(0) = z¢, and
we are done. The conjoined curve & = vy * - - - x 7 satisfies the desired properties at
each step of the induction, hence satisfies it in general.

2. Comence by lifting each path the path H(s,0) to H(s,0) by the unique lift that
H(s,0) = z9. Then for each s define H(s,t) to be the lift of the curve ¢ — H(s,t)
starting at xg. Then by construction fo H = H.

Now we must show that H is continuous. To do this let U’ denote a finite cover of
H (I?) by covering sets. Now set for each pair (¢, s) € I? denote [t—e, t+¢| X [s—¢, s+¢]
a set contained entirely in som H~!(U%) (¢ depends on s andt). Then we can take

a finite subcover with these types of sets, [t},t?] x [s}, s?]. Now by placing all of the

. . 1771 1%
s] and ¢] in order on their respectively intervals and relabeling in that order, we get

rectangles [t;, t;+1] X [sj, 8j41] such that H([t;, ti11] X [s5,8j41]) C U* for some k.

Now we claim that H (s, t) = (f|U})~*(H) for some UF and for all t and s. To see this
we do induction on s and ¢. Suppose the claim is true for all £ < ¢; and s < s;. Then
choose t € [t;,ti1], and s € [s;r, s;41] for j'+1 < j. Then H([t;, tix1] X [s;7,5541]) C
U for some k. But then H(s,t;) = (f|UF)~'(c(s,t;)) by the inductive hypothesis,
and H(s,-) is a lift of H(s,-), so H(s,t) = (flUF)~'(c(s,t)) for all t < t;. Once t has
been increased, s can be increased in a similar vein. Hence H is locally continuou,
but then it is globally continuous.

3. To show this we must first show that if v and 4" are two curves, and fovy ~ fo~' then
~v ~ ~'. But this is easy with the previous, because let H be a homotopy between
fo~and f o~ starting at f(x¢), then H at x( is a homotopy between v and ~'.

O



