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1.

solution.

Let {v1, . . . , vq} and {w1, . . . , w_p} be collections of vectors in an n-dimensional vector
space V . Let vI denote vi1 ∧ · · · ∧ vik for I = {i1, . . . , ik} ⊂ {1, . . . , q}, and similarly for wI .
Now Let us assume that ∑

I

aIvI =
∑
J

bJwJ .

Then we wish to show that
f∗

∑
I

aIvI = f∗
∑
J

bJwJ .

Without loss of generality we may assume that the vi are a basis and q = n (while the wi
need not be). Because of this, we may express wi =

∑n
j=1 Tijvj , i = 1, . . . , p. Then we

know that ∑
I

aIvI =
∑
J,L

bJTJ,LvL

where TJ,L =
∑

σ∈Sk sgn (I, [n])sgn (L, [q])sgn (σ)tj1lσ(1)
· · · tjklσ(k)

, and sgn (I, [n]) denotes
the sign of the permutation that takes the j to ij for 1 ≤ j ≤ k, and puts the remaining
numbers in increasing order. But then aI =

∑
J bJTJ,L. Now we note∑

I

aIf∗(vI) =
∑
I,J

bJTJ,If∗(vI).

But we can pull the coefficients TJ,I into the push forward, to get that this is

=
∑
J

bJf

 n∑
l1=1

Tj1l1vl1

 ∧ · · · ∧ f
 n∑
lk=1

Tjklk


=

∑
J

bJf∗(wJ).
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As for the second property, we note that by definition ω(w1 ∧ · · ·wk) = ω(w1, . . . , wk), and
we note that

f∗ω(v1, . . . , vk) = ω(f(v1), . . . , f(vk))
= ω(f(v1) ∧ · · · ∧ f(vk))
= ω(f∗(v1 ∧ · · · ∧ vk)).

2.

solution. Let w1 = v1, . . . , wm = vm denote a basis of W and vm+1, . . . , vn complete these
to a basis of V . First to show that the map ι∗ is injective: suppose

∑
I αIι∗(wI) = 0, then∑

I αIvI = 0 but the vI are a basis of
∧
k V , so αI = 0, and

∑
I αIwI = 0.

Now for surjectivity of ι∗. Let ω1, . . . , ωm denote a dual basis of w1, . . . , wm, and let
ν1, . . . , νn denote a basis dual to the vi. Then consider ι∗(vI) for I ⊂ [m] ⊂ [n].

ι∗(νI)(wi1 , . . . , wik) = νI(ι(wi1), . . . , ι(wik))
= νI(vi1 , . . . , vik)

=

{
1 if I = {i1, . . . , ik}
0 otherwise.

But in this case ι∗νI = ωI , and I was arbitrary, so ι∗ is surjective.

3.

solution. 1. Let ωi be a (not necessarily standard) basis for R4∗. Then by the condition,
we have that f∗(ω1) ∧ f∗(ω2) = ω1 ∧ ω2). If we write f∗ωi = fi + gi for fi ∈
span {ω1, ω2}, and gi ∈ span {ω3, ω4}, then

f∗(ω1) ∧ f∗(ω2) = f1 ∧ f2 + f1 ∧ g2 + g1 ∧ f2 + g1 ∧ g2.

All of the terms are linearly independent, and excluding possibly f1 ∧ f2 are linearly
independent from ω1 ∧ ω2, hence they are 0. But if two one forms α and β wedge
to 0, then they are scalar multiples of one another. But the fi and gi are in linearly
independent spaces, and so the gi are 0.

But then f∗span {ωi, ωj} ⊂ span {ωi, ωj} =: Pij for all i 6= j.

2. If we intersect P12 and P23 we get Rω2, but because f∗P12 = P12 and f∗P23 = P23

we get that f∗ω2 = λω2. But our choice of basis was arbitrary, so we have that
f∗ω = λω for all ω. Now suppose η and ω are linearly independent then if f∗ω = λω
and f∗η = µη, and f∗(ω+η) = ν(ω+η). But f∗(ω+η) = λω+νη, hence µ = ν = λ,
and f∗ = λid. If this is the case then we have that f∗η ∧ f∗ω = λ2η ∧ω = η ∧ω from
which we get that λ = ±1.
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3. f = ±id.

4. Here is a more algebraic proof that uses the idea of an annihilator. Let e1, . . . , e4 be
an arbitrary basis with dual ε1, . . . , ε4. Let α be a 2-form, and define the annihilator
of α,

A(α) := {v ∈ R4 : ∀w ∈ R4 α(v, w) = 0}.

That is A(α) is the set of vectors which always go to 0. It is trivial to see that A(α)
is a linear subspace for all α.

Now we make the following claim: for i, j, k, l any permutation of the numbers 1, 2, 3, 4,
that

A(εi ∧ εj) = span {ek, el.

We show the case i = 1, j = 2mk = 3, l = 4. Consider

ε1 ∧ ε2(αe1 + βe2,−βe1 + αe2) = α2ε1(e1)ε2(e2)− β(−β)ε2(e2)ε1(e1)

= α2 + β2,

which is nonzero for αe1 + βe2 not equal to 0. Then trivially e3 and e4 are in
A(ε1 ∧ ε2), but then they span a two dimensional subspace span {e3, e4} ⊂ A(ε1 ∧ ε2)
which is complementary to span {e1, e2}, which intersects A(ε1 ∧ ε2) only at 0, so
A(ε1 ∧ ε2) = span {e3, e4}.
Now let because f∗(α) = α, for any two form, we know that f(A(α)) ⊂ A(α) for any
two form. Now consider that e1 ∈ A(εi∧εj) for i 6= 1 6= j. But then f(e1) ∈ A(εi∧εj).
But the only vectors that are in

A(ε2 ∧ ε3) ∩A(ε3 ∧ ε4) ∩A(ε4 ∧ ε2),

are those of the form λe1. Hence f(e1) = λe1. But our choice of basis was arbitrary,
so f(v) = λvv for every v, so every vector is an eigenvector. Then proceed as before.

4.

solution. 1. Let f : V k → W be alternating and multilinear. Define f :
∧
k V → W by

f(v1 ∧ · · · ∧ vk) := f(v1, . . . , vk). Before we can say that this defines a unique map, it
is worth mentioning that it actually defines a map. To do this we will show that for
a given basis, e1, . . . , en the map defined in that way extends to all k-vectors. This
will show uniqueness of the map, as the k-vectors eI define a basis for

∧
k V . Let

vi =
∑

j aijej . Then

v[k] =
∑
J

a[k],JeJ ,
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where a[k],J are defined as in the solution to problem 1. Then by a linear extension,
we have that

f(v[k]) =
∑
J

a[k],Jf(eJ)

=
∑
J

a[k],Jf(ej1 , . . . , ejk).

Now we can apply multilinearity of f to arrive at

f(v[k]) = f(
∑
j1

a1j1ej1 , . . . ,
∑
j1

akjkejk)

= f(v1, . . . , vk).

Hence the map is well defined and uniquely defined by extending linearly from a basis.

2. First we construct the multilinear map ϑ : V k →
∧
k V ϑ : (v1, . . . , vk)→ v1∧· · ·∧vk.

Then by the unique lifting property of X and
∧
k V , we have maps θ :

∧
k V → X,

and ϑ : X →
∧
k V . But with these we have that θ ◦ ϑ = θ, But ϑ ◦ θ = ϑ, so

ϑ ◦ θ ◦ ϑ = ϑ.

But ϑ is surjective onto a basis of
∧
k V , so ϑ ◦ θ = id.

Similarly the map θ ◦ ϑ ◦ θ = θ. But id : X → X is the unique lift of the multilinear
map θ, so θ ◦ ϑ = id. Hence X ∼=

∧
k V .

5.

solution. Suppose that f is invertible otherwise both sides of the equation are 0. Here it is
sufficient to examine simple functions. Let u =

∑
i aiχEi . Then∫

Rn
u ◦ f |Jf | dLn =

∫
Rn

∑
ai

χEi ◦ f | det f | dLn

=
∫

Rn

∑
ai

χf−1(Ei)|det f | dLn

=
∑
i

ai|f−1(Ei)||det f |

=
∑
i

ai|Ei||det f−1||det f |

=
∑
i

ai|Ei|

=
∫
f(Rn)

u dLn.
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6.

solution. A covering map π : B → X is an open map between connected spaces for which
for every x ∈ X, there is a U ⊂ X containing x, such that π−1(U) = tiUi, and π|Ui is a
homeomorphism.

1. The set σ([0, 1]) is compact, so it may be covered by a finite collection of covering sets
U i. Then every point t ∈ [0, 1] has a neighbourhood [t− εt, t+ εt] contained entirely
in σ−1(U i). Cover I with the sets (t−εt, t+εt), then there is a finite subcover (ti, si).
Arranging eng points in order from least to largest and relabeling τi, we get intervals
[τi, τi+1] whose image under σ is contained entirely in U i for some i.

Now define inductively γi : [τi, τi+1]→ X, to be

γi(t) = (f |Uk)−1 ◦ σ(t),

where Uk contains σ([τi, τi+1) and Ukl contains γi−1(τi). Then set γ0(0) = x0, and
we are done. The conjoined curve σ̃ = γN ∗ · · · ∗ γ0 satisfies the desired properties at
each step of the induction, hence satisfies it in general.

2. Comence by lifting each path the path H(s, 0) to H̃(s, 0) by the unique lift that
H(s, 0) = x0. Then for each s define H̃(s, t) to be the lift of the curve t 7→ H(s, t)
starting at x0. Then by construction f ◦ H̃ = H.

Now we must show that H̃ is continuous. To do this let U i denote a finite cover of
H(I2) by covering sets. Now set for each pair (t, s) ∈ I2 denote [t−ε, t+ε]×[s−ε, s+ε]
a set contained entirely in som H−1(U i) (ε depends on s andt). Then we can take
a finite subcover with these types of sets, [t1i , t

2
i ]× [s1i , s

2
i ]. Now by placing all of the

sji and t
j
i in order on their respectively intervals and relabeling in that order, we get

rectangles [ti, ti+1]× [sj , sj+1] such that H([ti, ti+1]× [sj , sj+1]) ⊂ Uk for some k.

Now we claim that H̃(s, t) = (f |Ukl )−1(H) for some Ukl and for all t and s. To see this
we do induction on s and t. Suppose the claim is true for all t ≤ ti and s ≤ sj . Then
choose t ∈ [ti, ti+1], and s ∈ [sj′ , sj′+1] for j′+1 ≤ j. Then H([ti, ti+1]× [sj′ , sj′+1]) ⊂
Uk for some k. But then H̃(s, ti) = (f |Ukl )−1(σ(s, ti)) by the inductive hypothesis,
and H̃(s, ·) is a lift of H(s, ·), so H̃(s, t) = (f |Ukl )−1(σ(s, t)) for all t < ti. Once t has
been increased, s can be increased in a similar vein. Hence H̃ is locally continuou,
but then it is globally continuous.

3. To show this we must first show that if γ and γ′ are two curves, and f ◦γ ∼ f ◦γ′ then
γ ∼ γ′. But this is easy with the previous, because let H be a homotopy between
f ◦ γ and f ◦ γ′ starting at f(x0), then H̃ at x0 is a homotopy between γ and γ′.
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