Introduction to differential forms

model solutions 3

Jan Cristina

1.

solution.
Let $\left\{v_{1}, \ldots, v_{q}\right\}$ and $\left\{w_{1}, \ldots, w _p\right\}$ be collections of vectors in an n-dimensional vector space V. Let v_{I} denote $v_{i_{1}} \wedge \cdots \wedge v_{i_{k}}$ for $I=\left\{i_{1}, \ldots, i_{k}\right\} \subset\{1, \ldots, q\}$, and similarly for w_{I}. Now Let us assume that

$$
\sum_{I} a_{I} v_{I}=\sum_{J} b_{J} w_{J}
$$

Then we wish to show that

$$
f_{*} \sum_{I} a_{I} v_{I}=f_{*} \sum_{J} b_{J} w_{J}
$$

Without loss of generality we may assume that the v_{i} are a basis and $q=n$ (while the w_{i} need not be). Because of this, we may express $w_{i}=\sum_{j=1}^{n} T_{i j} v_{j}, i=1, \ldots, p$. Then we know that

$$
\sum_{I} a_{I} v_{I}=\sum_{J, L} b_{J} T_{J, L} v_{L}
$$

where $T_{J, L}=\sum_{\sigma \in S_{k}} \operatorname{sgn}(I,[n]) \operatorname{sgn}(L,[q]) \operatorname{sgn}(\sigma) t_{j_{1} l_{\sigma(1)}} \cdots t_{j_{k} l_{\sigma(k)}}$, and $\operatorname{sgn}(I,[n])$ denotes the sign of the permutation that takes the j to i_{j} for $1 \leq j \leq k$, and puts the remaining numbers in increasing order. But then $a_{I}=\sum_{J} b_{J} T_{J, L}$. Now we note

$$
\sum_{I} a_{I} f_{*}\left(v_{I}\right)=\sum_{I, J} b_{J} T_{J, I} f_{*}\left(v_{I}\right)
$$

But we can pull the coefficients $T_{J, I}$ into the push forward, to get that this is

$$
\begin{aligned}
& =\sum_{J} b_{J} f\left(\sum_{l_{1}=1}^{n} T_{j_{1} l_{1}} v_{l_{1}}\right) \wedge \cdots \wedge f\left(\sum_{l_{k}=1}^{n} T_{j_{k} l_{k}}\right) \\
& =\sum_{J} b_{J} f_{*}\left(w_{J}\right)
\end{aligned}
$$

As for the second property, we note that by definition $\underline{\omega}\left(w_{1} \wedge \cdots w_{k}\right)=\omega\left(w_{1}, \ldots, w_{k}\right)$, and we note that

$$
\begin{aligned}
f^{*} \omega\left(v_{1}, \ldots, v_{k}\right) & =\omega\left(f\left(v_{1}\right), \ldots, f\left(v_{k}\right)\right) \\
& =\underline{\omega}\left(f\left(v_{1}\right) \wedge \cdots \wedge f\left(v_{k}\right)\right) \\
& =\underline{\omega}\left(f_{*}\left(v_{1} \wedge \cdots \wedge v_{k}\right)\right) .
\end{aligned}
$$

2.

solution. Let $w_{1}=v_{1}, \ldots, w_{m}=v_{m}$ denote a basis of W and v_{m+1}, \ldots, v_{n} complete these to a basis of V. First to show that the map ι_{*} is injective: suppose $\sum_{I} \alpha_{I} \iota_{*}\left(w_{I}\right)=0$, then $\sum_{I} \alpha_{I} v_{I}=0$ but the v_{I} are a basis of $\bigwedge_{k} V$, so $\alpha_{I}=0$, and $\sum_{I} \alpha_{I} w_{I}=0$.

Now for surjectivity of ι^{*}. Let $\omega_{1}, \ldots, \omega_{m}$ denote a dual basis of w_{1}, \ldots, w_{m}, and let ν_{1}, \ldots, ν_{n} denote a basis dual to the v_{i}. Then consider $\iota^{*}\left(v_{I}\right)$ for $I \subset[m] \subset[n]$.

$$
\begin{aligned}
\iota^{*}\left(\nu_{I}\right)\left(w_{i_{1}}, \ldots, w_{i_{k}}\right) & =\nu_{I}\left(\iota\left(w_{i_{1}}\right), \ldots, \iota\left(w_{i_{k}}\right)\right) \\
& =\nu_{I}\left(v_{i_{1}}, \ldots, v_{i_{k}}\right) \\
& = \begin{cases}1 & \text { if } I=\left\{i_{1}, \ldots, i_{k}\right\} \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

But in this case $\iota^{*} \nu_{I}=\omega_{I}$, and I was arbitrary, so ι^{*} is surjective.

3.

solution. 1. Let ω_{i} be a (not necessarily standard) basis for $\mathbb{R}^{4 *}$. Then by the condition, we have that $\left.f^{*}\left(\omega_{1}\right) \wedge f^{*}\left(\omega_{2}\right)=\omega_{1} \wedge \omega_{2}\right)$. If we write $f^{*} \omega_{i}=f_{i}+g_{i}$ for $f_{i} \in$ span $\left\{\omega_{1}, \omega_{2}\right\}$, and $g_{i} \in \operatorname{span}\left\{\omega_{3}, \omega_{4}\right\}$, then

$$
f^{*}\left(\omega_{1}\right) \wedge f^{*}\left(\omega_{2}\right)=f_{1} \wedge f_{2}+f_{1} \wedge g_{2}+g_{1} \wedge f_{2}+g_{1} \wedge g_{2} .
$$

All of the terms are linearly independent, and excluding possibly $f_{1} \wedge f_{2}$ are linearly independent from $\omega_{1} \wedge \omega_{2}$, hence they are 0 . But if two one forms α and β wedge to 0 , then they are scalar multiples of one another. But the f_{i} and g_{i} are in linearly independent spaces, and so the g_{i} are 0 .
But then f^{*} span $\left\{\omega_{i}, \omega_{j}\right\} \subset \operatorname{span}\left\{\omega_{i}, \omega_{j}\right\}=: P_{i j}$ for all $i \neq j$.
2. If we intersect P_{12} and P_{23} we get $\mathbb{R} \omega_{2}$, but because $f^{*} P_{12}=P_{12}$ and $f^{*} P_{23}=P_{23}$ we get that $f^{*} \omega_{2}=\lambda \omega_{2}$. But our choice of basis was arbitrary, so we have that $f^{*} \omega=\lambda \omega$ for all ω. Now suppose η and ω are linearly independent then if $f^{*} \omega=\lambda \omega$ and $f^{*} \eta=\mu \eta$, and $f^{*}(\omega+\eta)=\nu(\omega+\eta)$. But $f^{*}(\omega+\eta)=\lambda \omega+\nu \eta$, hence $\mu=\nu=\lambda$, and $f^{*}=\lambda$ id. If this is the case then we have that $f^{*} \eta \wedge f^{*} \omega=\lambda^{2} \eta \wedge \omega=\eta \wedge \omega$ from which we get that $\lambda= \pm 1$.
3. $f= \pm \mathrm{id}$.
4. Here is a more algebraic proof that uses the idea of an annihilator. Let e_{1}, \ldots, e_{4} be an arbitrary basis with dual $\varepsilon_{1}, \ldots, \varepsilon_{4}$. Let α be a 2 -form, and define the annihilator of α,

$$
A(\alpha):=\left\{v \in \mathbb{R}^{4}: \forall w \in \mathbb{R}^{4} \alpha(v, w)=0\right\} .
$$

That is $A(\alpha)$ is the set of vectors which always go to 0 . It is trivial to see that $A(\alpha)$ is a linear subspace for all α.
Now we make the following claim: for i, j, k, l any permutation of the numbers $1,2,3,4$, that

$$
A\left(\varepsilon_{i} \wedge \varepsilon_{j}\right)=\operatorname{span}\left\{e_{k}, e_{l}\right.
$$

We show the case $i=1, j=2 m k=3, l=4$. Consider

$$
\begin{aligned}
\varepsilon_{1} \wedge \varepsilon_{2}\left(\alpha e_{1}+\beta e_{2},-\beta e_{1}+\alpha e_{2}\right) & =\alpha^{2} \varepsilon_{1}\left(e_{1}\right) \varepsilon_{2}\left(e_{2}\right)-\beta(-\beta) \varepsilon_{2}\left(e_{2}\right) \varepsilon_{1}\left(e_{1}\right) \\
& =\alpha^{2}+\beta^{2},
\end{aligned}
$$

which is nonzero for $\alpha e_{1}+\beta e_{2}$ not equal to 0 . Then trivially e_{3} and e_{4} are in $A\left(\varepsilon_{1} \wedge \varepsilon_{2}\right)$, but then they span a two dimensional subspace span $\left\{e_{3}, e_{4}\right\} \subset A\left(\varepsilon_{1} \wedge \varepsilon_{2}\right)$ which is complementary to span $\left\{e_{1}, e_{2}\right\}$, which intersects $A\left(\varepsilon_{1} \wedge \varepsilon_{2}\right)$ only at 0 , so $A\left(\varepsilon_{1} \wedge \varepsilon_{2}\right)=\operatorname{span}\left\{e_{3}, e_{4}\right\}$.
Now let because $f^{*}(\alpha)=\alpha$, for any two form, we know that $f(A(\alpha)) \subset A(\alpha)$ for any two form. Now consider that $e_{1} \in A\left(\varepsilon_{i} \wedge \varepsilon_{j}\right)$ for $i \neq 1 \neq j$. But then $f\left(e_{1}\right) \in A\left(\varepsilon_{i} \wedge \varepsilon_{j}\right)$. But the only vectors that are in

$$
A\left(\varepsilon_{2} \wedge \varepsilon_{3}\right) \cap A\left(\varepsilon_{3} \wedge \varepsilon_{4}\right) \cap A\left(\varepsilon_{4} \wedge \varepsilon_{2}\right)
$$

are those of the form λe_{1}. Hence $f\left(e_{1}\right)=\lambda e_{1}$. But our choice of basis was arbitrary, so $f(v)=\lambda_{v} v$ for every v, so every vector is an eigenvector. Then proceed as before.

4.

solution. 1. Let $f: V^{k} \rightarrow W$ be alternating and multilinear. Define $\underline{f}: \bigwedge_{k} V \rightarrow W$ by $\underline{f}\left(v_{1} \wedge \cdots \wedge v_{k}\right):=f\left(v_{1}, \ldots, v_{k}\right)$. Before we can say that this defines a unique map, it $\overline{\text { is }}$ worth mentioning that it actually defines a map. To do this we will show that for a given basis, e_{1}, \ldots, e_{n} the map defined in that way extends to all k-vectors. This will show uniqueness of the map, as the k-vectors e_{I} define a basis for $\Lambda_{k} V$. Let $v_{i}=\sum_{j} a_{i j} e_{j}$. Then

$$
v_{[k]}=\sum_{J} a_{[k], J} e_{J}
$$

where $a_{[k], J}$ are defined as in the solution to problem 1 . Then by a linear extension, we have that

$$
\begin{aligned}
\underline{f}\left(v_{[k]}\right) & =\sum_{J} a_{[k], J} \underline{f}\left(e_{J}\right) \\
& =\sum_{J} a_{[k], J} f\left(e_{j_{1}}, \ldots, e_{j_{k}}\right) .
\end{aligned}
$$

Now we can apply multilinearity of f to arrive at

$$
\begin{aligned}
\underline{f}\left(v_{[k]}\right) & =f\left(\sum_{j_{1}} a_{1 j_{1}} e_{j_{1}}, \ldots, \sum_{j_{1}} a_{k j_{k}} e_{j_{k}}\right) \\
& =f\left(v_{1}, \ldots, v_{k}\right) .
\end{aligned}
$$

Hence the map is well defined and uniquely defined by extending linearly from a basis.
2. First we construct the multilinear map $\vartheta: V^{k} \rightarrow \bigwedge_{k} V \vartheta:\left(v_{1}, \ldots, v_{k}\right) \rightarrow v_{1} \wedge \cdots \wedge v_{k}$. Then by the unique lifting property of X and $\bigwedge_{k} V$, we have maps $\underline{\theta}: \bigwedge_{k} V \rightarrow X$, and $\underline{\vartheta}: X \rightarrow \bigwedge_{k} V$. But with these we have that $\underline{\theta} \circ \vartheta=\theta$, But $\underline{\vartheta} \circ \theta=\vartheta$, so

$$
\underline{\vartheta} \circ \underline{\theta} \circ \vartheta=\vartheta .
$$

But ϑ is surjective onto a basis of $\bigwedge_{k} V$, so $\underline{\vartheta} \circ \underline{\theta}=\mathrm{id}$.
Similarly the map $\underline{\theta} \circ \underline{\vartheta} \circ \theta=\theta$. But id : $X \rightarrow X$ is the unique lift of the multilinear map θ, so $\underline{\theta} \circ \underline{\vartheta}=$ id. Hence $X \cong \bigwedge_{k} V$.
5.
solution. Suppose that f is invertible otherwise both sides of the equation are 0 . Here it is sufficient to examine simple functions. Let $u=\sum_{i} a_{i} \chi_{E_{i}}$. Then

$$
\begin{aligned}
\int_{\mathbb{R}^{n}} u \circ f\left|J_{f}\right| d \mathcal{L}^{n} & =\int_{\mathbb{R}^{n}} \sum_{a_{i}} \chi_{E_{i}} \circ f|\operatorname{det} f| d \mathcal{L}^{n} \\
& =\int_{\mathbb{R}^{n}} \sum_{a_{i}} \chi_{f^{-1}\left(E_{i}\right)}|\operatorname{det} f| d \mathcal{L}^{n} \\
& =\sum_{i} a_{i}\left|f^{-1}\left(E_{i}\right)\right||\operatorname{det} f| \\
& =\sum_{i} a_{i}\left|E_{i}\right|\left|\operatorname{det} f^{-1}\right||\operatorname{det} f| \\
& =\sum_{i} a_{i}\left|E_{i}\right| \\
& =\int_{f\left(\mathbb{R}^{n}\right)} u d \mathcal{L}^{n} .
\end{aligned}
$$

6.

solution. A covering map $\pi: B \rightarrow X$ is an open map between connected spaces for which for every $x \in X$, there is a $U \subset X$ containing x, such that $\pi^{-1}(U)=\sqcup_{i} U_{i}$, and $\pi \mid U_{i}$ is a homeomorphism.

1. The set $\sigma([0,1])$ is compact, so it may be covered by a finite collection of covering sets U^{i}. Then every point $t \in[0,1]$ has a neighbourhood $\left[t-\varepsilon_{t}, t+\varepsilon_{t}\right]$ contained entirely in $\sigma^{-1}\left(U^{i}\right)$. Cover I with the sets $\left(t-\varepsilon_{t}, t+\varepsilon_{t}\right)$, then there is a finite subcover $\left(t_{i}, s_{i}\right)$. Arranging eng points in order from least to largest and relabeling τ_{i}, we get intervals $\left[\tau_{i}, \tau_{i+1}\right]$ whose image under σ is contained entirely in U^{i} for some i.
Now define inductively $\gamma_{i}:\left[\tau_{i}, \tau_{i+1}\right] \rightarrow X$, to be

$$
\gamma_{i}(t)=\left(f \mid U^{k}\right)^{-1} \circ \sigma(t),
$$

where U^{k} contains $\sigma\left(\left[\tau_{i}, \tau_{i+1}\right)\right.$ and U_{l}^{k} contains $\gamma_{i-1}\left(\tau_{i}\right)$. Then set $\gamma_{0}(0)=x_{0}$, and we are done. The conjoined curve $\tilde{\sigma}=\gamma_{N} * \cdots * \gamma_{0}$ satisfies the desired properties at each step of the induction, hence satisfies it in general.
2. Comence by lifting each path the path $H(s, 0)$ to $\tilde{H}(s, 0)$ by the unique lift that $H(s, 0)=x_{0}$. Then for each s define $\tilde{H}(s, t)$ to be the lift of the curve $t \mapsto H(s, t)$ starting at x_{0}. Then by construction $f \circ \tilde{H}=H$.
Now we must show that \tilde{H} is continuous. To do this let U^{i} denote a finite cover of $H\left(I^{2}\right)$ by covering sets. Now set for each pair $(t, s) \in I^{2}$ denote $[t-\varepsilon, t+\varepsilon] \times[s-\varepsilon, s+\varepsilon]$ a set contained entirely in som $H^{-1}\left(U^{i}\right)(\varepsilon$ depends on s and $t)$. Then we can take a finite subcover with these types of sets, $\left[t_{i}^{1}, t_{i}^{2}\right] \times\left[s_{i}^{1}, s_{i}^{2}\right]$. Now by placing all of the s_{i}^{j} and t_{i}^{j} in order on their respectively intervals and relabeling in that order, we get rectangles $\left[t_{i}, t_{i+1}\right] \times\left[s_{j}, s_{j+1}\right]$ such that $\mathcal{H}\left(\left[t_{i}, t_{i+1}\right] \times\left[s_{j}, s_{j+1}\right]\right) \subset U^{k}$ for some k.
Now we claim that $\tilde{H}(s, t)=\left(f \mid U_{l}^{k}\right)^{-1}(\mathcal{H})$ for some U_{l}^{k} and for all t and s. To see this we do induction on s and t. Suppose the claim is true for all $t \leq t_{i}$ and $s \leq s_{j}$. Then choose $t \in\left[t_{i}, t_{i+1}\right]$, and $s \in\left[s_{j^{\prime}}, s_{j^{\prime}+1}\right]$ for $j^{\prime}+1 \leq j$. Then $\mathcal{H}\left(\left[t_{i}, t_{i+1}\right] \times\left[s_{j^{\prime}}, s_{j^{\prime}+1}\right]\right) \subset$ U^{k} for some k. But then $\tilde{H}\left(s, t_{i}\right)=\left(f \mid U_{l}^{k}\right)^{-1}\left(\sigma\left(s, t_{i}\right)\right)$ by the inductive hypothesis, and $\tilde{H}(s, \cdot)$ is a lift of $H(s, \cdot)$, so $\tilde{H}(s, t)=\left(f \mid U_{l}^{k}\right)^{-1}(\sigma(s, t))$ for all $t<t_{i}$. Once t has been increased, s can be increased in a similar vein. Hence \tilde{H} is locally continuou, but then it is globally continuous.
3. To show this we must first show that if γ and γ^{\prime} are two curves, and $f \circ \gamma \sim f \circ \gamma^{\prime}$ then $\gamma \sim \gamma^{\prime}$. But this is easy with the previous, because let H be a homotopy between $f \circ \gamma$ and $f \circ \gamma^{\prime}$ starting at $f\left(x_{0}\right)$, then \tilde{H} at x_{0} is a homotopy between γ and γ^{\prime}.

