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1.

solution. 1. In general when faced with a proof for an insurmountable number of indices,
of a general length, it is good to proceed with induction. In this case we can make
the following inductive hypothesis for all (n× n)-matrices, B we have that

detB =
∑
σ∈Sn

sgn (σ)b1σ(1) · · · bnσ(n)

Now assume for all k ∈ N and for all (k × k)-matrices A

detA =
k∑
i=1

(−1)ia1i detA1i.

Now let k = n+ 1 then

detA =
n+1∑
i=1

(−1)ia1i

∑
σ∈Sn+1,σ(1)=1

sgn (σ)a2(1,i)σ(2) · · · an+1(1,i)σ(n+1)∑
σ∈Sn+1

sgn (σ)a1σ(1)···anσ(n)
.

Then because the determinant formula is trivial for n = 1, by induction we have the
result.

2. We have by definition that

ε1 ∧ · · · ∧ εn(v1, . . . , vn) =
∑
σ∈Sn

sgn (σ)ε1(vσ(1)) · · · εn(vσ(n))

=
∑
σ∈Sn

sgn (σ)v1σ(1) · · · vnσ(n)

= det(v1, . . . , vn).
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3. Now we must show that any alternating k-linear map α can be represented as∑
I

αIf
∗
I det,

where det is the standard determinant in Rk. To do this, we define

αI = α(ei1 , . . . , eik).

Then we can examine

(α)(v1, . . . , vk) =
∑
i1,...,ik

v1i1 · · · vkikα(ei1 , . . . , eik)

=
∑
I⊂N

∑
σ∈SI

sgn (σ)v1σ(i1) · · · vkσ(ik)αI

=
∑
I⊂N

∑
σ∈Sk

sgn (σ)fI(v1)σ(1) · · · fI(vk)σ(k)αI

=
∑
I⊂N

αI det(fI(v1), . . . , fI(vk))

=
∑
I⊂N

αIf
∗
I det(v1, . . . , vk).

2.

solution.

1. Suppose vk =
∑k−1

i=1 λivi. Then

ω(v1, . . . , vk) =
k−1∑
i=1

λiω(v1, . . . , vk−1, vi)

= 0.

as the two of the entries are equal. As a conclusion any alternating k-linear map on
V is 0 for dimV < k as any collection of k vectors is linearly dependent.

2. We denote the permutation on k+ l symbols which maps i to l+ i for 1 ≤ i ≤ k, and
maps k + j to j for 1 ≤ j ≤ l, by ς. This permutation is idempotent, that is ς2 = id ,
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and has sign sgn (ς) = (−1)lk. We continue with the definition of the wedge product

ω ∧ τ(v1, . . . , vk+l) =
∑

σ∈Sk+l,k

sgn (σω(vσ(1), . . . , vσ(k))τ(vσ(k+1) . . . , vσ(k+l))

=
∑

σ∈Sk+l,k

sgn (σ)τ(vσ◦ς(1), . . . , vσ◦ς(l)ω(vσ◦ς(l+1), . . . , vσ◦ς(l+k)

=
∑

σ∈Sk+l,k

(−1)lksgn (σ ◦ ς)τ(vσ◦ς(1), . . . , vσ◦ς(l)ω(vσ◦ς(l+1), . . . , vσ◦ς(l+k))

= (−1)lk
∑

ρ∈Sk+l,l

sgn (ρ)τ(vρ(1), . . . , vρ(l))ω(vρ(l+1), . . . , vρ(k+l))

= τ ∧ ω(v1, . . . , vk+l).

3.

solution. 1. Suppose n = 2, then there is precisely one subset of the set of two elements,
with two elements, namely, the set itself. This is important for applying the struc-
ture theorem. The condition that L∗(α) = α in R2 says precisely that L∗α(v1, v1) =
α(v1, v2), which by the structure theorem gives α(v1, v2) = α det(v1, v2). But L∗α(v1, v2) =
α(L(v1), L(v2)) = α detLdet(v1, v2). Thus detL = 1 is equivalent to L∗ is the iden-
tity on Altk.

2. Let εi i = 1, 2, 3 be a basis of R3∗. Consider A∗(ε1)∧A∗(ε2 ∧ ε3) = A∗(ε1 ∧ ε2 ∧ ε3) =
det(A)ε1∧ ε2∧ ε3 = ε1∧ ε2∧ ε3. With this we can see that A∗ε1 = ε1 +a21ε2 + b31ε3.
Similarly for A∗ε2 and A∗ε3. Now consider

ε1 ∧ ε2 = A∗ε1 ∧A∗ε2
= (ε1 + a21ε2 + a31ε3) ∧ (a12ε1 + ε2 + a32ε3)
= (1− a12a21)ε1 ∧ ε2 + (a32 − a31a12)ε1 ∧ ε3 + (a21a32 − a31)ε2 ∧ ε3.

From this we can conclude that

a12a21 = 0 a32 = a31a12 a31 = a32a21.

But by examining ε2 ∧ ε3 and ε3 ∧ ε1 we can arrive at

a23a32 = 0 a12 = a13a32 a13 = a12a23,

a31a13 = 0 a21 = a23a31 a23 = a21a13.

Suppose a12 = 0. Then a32 = 0, and a13 = 0. Then a31 = 0, and a23 = 0. Then
a21 = 0 and a13 = 0. Hence A = I.
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3. This problem is no longer assigned

4.

solution. 1. Assuming Ψ = Φ, and denoting by SI the set of injective maps from the set
of k symbols to {i1 < . . . < ik} ⊂ N with sgn : SI → {±1} given by sgn (f ◦ σ) =
sgn (σ) where f is the map j 7→ ij , and σ ∈ Sk we have that

〈Ψ(v1) ∧ · · · ∧Ψ(vk),Ψ(w1) ∧ · · · ∧Ψ(wk)〉 =〈 ∑
i1,...,ik

v1ijεi1 ∧ · · · ∧ vkikεik ,
∑

j1,...,jk

w1jjεj1 ∧ · · · ∧ wkjkεjk

〉

=

〈 ∑
i1,...,ik

v1i1 · · · vkikεi1 ∧ · · · ∧ εik ,
∑

j1,...,jk

w1j1 · · ·wkjkεj1 ∧ · · · ∧ εjk

〉
=

∑
i1,...ik

∑
σSk

sgn (σ)v1i1 · · · vkikw1iσ(1)
· · ·wkiσ(k)

.

=
∑
σ∈Sk

sgn (σ)
∑
i1,...,ik

v1i1 · · · vkikwσ(1)i1 · · ·wσ(k)ik

= det〈vi, wj〉

2. The appropriate map needs to take eI to some mutiple of eN\I , where N = {1, . . . , n}.
Then we must find the appropriate scaling. We will call it sgn (n, I) and is given by
sgn (σ) for σ ∈ Sn,k, where σ(j) = ij for 1 ≤ j ≤ k. Let us test this

eI ∧ ∗eJ = sgn (σ)eI ∧ eJ =

{
0 if I 6= J

sgn (σ)ei1 ∧ · · · ∧ eik ∧ eik+1
∧ · · · ein .

Now σ puts i1, . . . , in in the right order, hence this has the desired property. The
property is linear, and hence holds for every vector (fix ω). Now we could suppose
that ω∧Bη = 〈ω, η〉ε1 ∧ · · · ∧ εn, but by subtracting B and ∗ we may as well suppose
that ω ∧Aη = 0 for every ω and η. Now fix ζ = Aη, and suppose ω ∧ ζ = 0 for every
ω, then we wish to show that ζ = 0. But εI ∧ ζ = ζN\IεI ∧ εN\I . If this is 0 for every
I, then ζ = 0.

5.
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solution. 1. Now it is sufficient to examine the action on a basis element. Consider
∗(eI) = sgn (n, I)eN\I , then ∗(eN\I) = sgn (n,N \ I)eN\(N\I) = sgn (n,N \ I)eI .
Hence ∗ ∗ (eI) = sgn (n, I)sgn (n,N \ I)eI . Now let us consider i1 < · · · < ik and
ik+1 < · · · < in, and let σ(j) = ij , then sgn (n, I) = sgn (n, I) whereas ς(j) = ik+j for
1 ≤ j ≤ n − k, and ς(j) = ij−(n−k) for n − k < j < n, and sgn (ς) = sgn (n,N \ I).
Then sgn(n, I)sgn(n,N \I) = sgn(ς−1◦σ), and the maps ς−1◦σ takes j to j+(n−k)
for 1 ≤ j ≤ k and to j − k for k < j ≤ n, and has sign (−1)k(n−k).

2. From now on denote εN = ε1 ∧ · · · ∧ εn, whenever n is the dimension of the space.
This should read A∗ ◦ ∗ = ∗ ◦A∗ : Altk(Rn)→ Altn−k(Rm). Now consider

ω ∧A∗(∗η)(v1, . . . , vn) =

=1︷ ︸︸ ︷
detAt ω ∧A∗(∗η)(v1, . . . , vn)

= ω ∧A∗(∗η)(Atv1, . . . , Atvn)
= At∗ω ∧At∗A∗(∗η)(v1, . . . , Atvn)
= At∗ω ∧ ∗η(v1, . . . , vn).
= 〈At∗ω, η〉(v1, . . . , vn).

Now we must show that 〈Lt∗ω, η〉 = 〈ω,L∗η〉 for any linear operator L : Rn → Rn.
To see this consider

〈L∗εI , εJ〉 = εI(Lej1 , . . . , Lejk)

=
∑
σ∈Sk

sgn (σ)εi1(Lejσ(1)
) · · · εik(Lejσ(k)

)

=
∑
σ∈Sk

sgn (σ)〈ei1 , Lejσ(1)
〉 · · · 〈eik , Lejσ(k)

〉

=
∑
σ∈Sk

sgn (σ)〈eiσ(1)
, Lej1〉 · · · 〈Lteiσ(k)

, ejk〉

= 〈εI , Lt∗εJ〉.

Now we merely note that 〈At∗ω, η〉 = 〈ω,A∗η〉 to arrive at

ω ∧A∗(∗η) = ω ∧ ∗(A∗η).

6.

solution. 1. We note that a Euclidean ball is a convex set so for any x, y ∈ B ant s ∈ [0, 1]
we have that sx+ (t− s)y ∈ B. Using this we draw a straight line between γ(t) and
γ̃(t) given by

H(s, t) = sγ(t) + (1− s)[(1− t)γ(0) + tγ(1)].

By convexity it is always in B, and for t = 0, 1 the path in s is constant.
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2. Because any curve γ : R3 \ {0} has a compact image, and so has positive distance
from 0. Furthermore it is uniformly continuous, hence there is a piecewise linear
approximation of γ, which we call γε for which ‖γ \ γε‖∞ < ε Then the straight line
homotopy sγε(t) + (1 − s)γ(t) misses 0. Now if we look at this curve projected to
the unit sphere, it misses a point, θ0, because it has finite length. Now in spherical
coordinates γ = (ρ, θ). Then we take the homotopy given by (s, t) 7→ ((1 − s)ρ(t) +
sρ(0), φs(θ(t))), where φ(s) is the Möbius map with sink θ(0), and source θ0. (Under
stereographic projection taking θ0 to ∞, they are given by

φs = (1− s)θ(t) + sθ(0).
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