Introduction to differential forms
 model solutions 2

Jan Cristina

1.

solution. 1. In general when faced with a proof for an insurmountable number of indices, of a general length, it is good to proceed with induction. In this case we can make the following inductive hypothesis for all $(n \times n)$-matrices, B we have that

$$
\operatorname{det} B=\sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma) b_{1 \sigma(1)} \cdots b_{n \sigma(n)}
$$

Now assume for all $k \in \mathbb{N}$ and for all $(k \times k)$-matrices A

$$
\operatorname{det} A=\sum_{i=1}^{k}(-1)^{i} a_{1 i} \operatorname{det} A_{1 i}
$$

Now let $k=n+1$ then

$$
\begin{aligned}
\operatorname{det} A= & \sum_{i=1}^{n+1}(-1)^{i} a_{1 i} \sum_{\sigma \in S_{n+1}, \sigma(1)=1} \operatorname{sgn}(\sigma) a_{2(1, i) \sigma(2)} \cdots a_{n+1(1, i) \sigma(n+1)} \\
& \sum_{\sigma \in S_{n+1}} \operatorname{sgn}(\sigma) a_{1 \sigma(1) \cdots a_{n \sigma(n)}}
\end{aligned}
$$

Then because the determinant formula is trivial for $n=1$, by induction we have the result.
2. We have by definition that

$$
\begin{aligned}
\varepsilon_{1} \wedge \cdots \wedge \varepsilon_{n}\left(v_{1}, \ldots, v_{n}\right) & =\sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma) \varepsilon_{1}\left(v_{\sigma(1)}\right) \cdots \varepsilon_{n}\left(v_{\sigma(n)}\right) \\
& =\sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma) v_{1 \sigma(1)} \cdots v_{n \sigma(n)} \\
& =\operatorname{det}\left(v_{1}, \ldots, v_{n}\right)
\end{aligned}
$$

3. Now we must show that any alternating k-linear map α can be represented as

$$
\sum_{I} \alpha_{I} f_{I}^{*} \operatorname{det}
$$

where det is the standard determinant in \mathbb{R}^{k}. To do this, we define

$$
\alpha_{I}=\alpha\left(e_{i_{1}}, \ldots, e_{i_{k}}\right)
$$

Then we can examine

$$
\begin{aligned}
(\alpha)\left(v_{1}, \ldots, v_{k}\right) & =\sum_{i_{1}, \ldots, i_{k}} v_{1 i_{1}} \cdots v_{k i_{k}} \alpha\left(e_{i_{1}}, \ldots, e_{i_{k}}\right) \\
& =\sum_{I \subset N} \sum_{\sigma \in S_{I}} \operatorname{sgn}(\sigma) v_{1 \sigma\left(i_{1}\right)} \cdots v_{k \sigma\left(i_{k}\right)} \alpha_{I} \\
& =\sum_{I \subset N} \sum_{\sigma \in S_{k}} \operatorname{sgn}(\sigma) f_{I}\left(v_{1}\right)_{\sigma(1)} \cdots f_{I}\left(v_{k}\right)_{\sigma(k)} \alpha_{I} \\
& =\sum_{I \subset N} \alpha_{I} \operatorname{det}\left(f_{I}\left(v_{1}\right), \ldots, f_{I}\left(v_{k}\right)\right) \\
& =\sum_{I \subset N} \alpha_{I} f_{I}^{*} \operatorname{det}\left(v_{1}, \ldots, v_{k}\right) .
\end{aligned}
$$

2.

solution.

1. Suppose $v_{k}=\sum_{i=1}^{k-1} \lambda_{i} v_{i}$. Then

$$
\begin{aligned}
\omega\left(v_{1}, \ldots, v_{k}\right) & =\sum_{i=1}^{k-1} \lambda_{i} \omega\left(v_{1}, \ldots, v_{k-1}, v_{i}\right) \\
& =0
\end{aligned}
$$

as the two of the entries are equal. As a conclusion any alternating k-linear map on V is 0 for $\operatorname{dim} V<k$ as any collection of k vectors is linearly dependent.
2. We denote the permutation on $k+l$ symbols which maps i to $l+i$ for $1 \leq i \leq k$, and maps $k+j$ to j for $1 \leq j \leq l$, by ς. This permutation is idempotent, that is $\varsigma^{2}=i d$,
and has sign $\operatorname{sgn}(\varsigma)=(-1)^{l k}$. We continue with the definition of the wedge product

$$
\begin{aligned}
\omega \wedge \tau\left(v_{1}, \ldots, v_{k+l}\right) & =\sum_{\sigma \in S_{k+l, k}} \operatorname{sgn}\left(\sigma \omega\left(v_{\sigma(1)}, \ldots, v_{\sigma(k)}\right) \tau\left(v_{\sigma(k+1)} \ldots, v_{\sigma(k+l)}\right)\right. \\
& =\sum_{\sigma \in S_{k+l, k}} \operatorname{sgn}(\sigma) \tau\left(v_{\sigma \circ \varsigma(1)}, \ldots, v_{\sigma \circ \varsigma(l)} \omega\left(v_{\sigma \circ \varsigma(l+1)}, \ldots, v_{\sigma \circ \varsigma(l+k)}\right.\right. \\
& =\sum_{\sigma \in S_{k+l, k}}(-1)^{l k} \operatorname{sgn}(\sigma \circ \varsigma) \tau\left(v_{\sigma \circ \varsigma(1)}, \ldots, v_{\sigma \circ \varsigma(l)} \omega\left(v_{\sigma \circ \varsigma(l+1)}, \ldots, v_{\sigma \circ \varsigma(l+k)}\right)\right. \\
& =(-1)^{l k} \sum_{\rho \in S_{k+l, l}} \operatorname{sgn}(\rho) \tau\left(v_{\rho(1)}, \ldots, v_{\rho(l)}\right) \omega\left(v_{\rho(l+1)}, \ldots, v_{\rho(k+l)}\right) \\
& =\tau \wedge \omega\left(v_{1}, \ldots, v_{k+l}\right) .
\end{aligned}
$$

3.

solution. 1. Suppose $n=2$, then there is precisely one subset of the set of two elements, with two elements, namely, the set itself. This is important for applying the structure theorem. The condition that $L^{*}(\alpha)=\alpha$ in \mathbb{R}^{2} says precisely that $L^{*} \alpha\left(v_{1}, v_{1}\right)=$ $\alpha\left(v_{1}, v_{2}\right)$, which by the structure theorem gives $\alpha\left(v_{1}, v_{2}\right)=\alpha \operatorname{det}\left(v_{1}, v_{2}\right)$. But $L^{*} \alpha\left(v_{1}, v_{2}\right)=$ $\alpha\left(L\left(v_{1}\right), L\left(v_{2}\right)\right)=\alpha \operatorname{det} L \operatorname{det}\left(v_{1}, v_{2}\right)$. Thus $\operatorname{det} L=1$ is equivalent to L^{*} is the identity on Alt^{k}.
2. Let $\varepsilon_{i} i=1,2,3$ be a basis of $\mathbb{R}^{3 *}$. Consider $A^{*}\left(\varepsilon_{1}\right) \wedge A^{*}\left(\varepsilon_{2} \wedge \varepsilon_{3}\right)=A^{*}\left(\varepsilon_{1} \wedge \varepsilon_{2} \wedge \varepsilon_{3}\right)=$ $\operatorname{det}(A) \varepsilon_{1} \wedge \varepsilon_{2} \wedge \varepsilon_{3}=\varepsilon_{1} \wedge \varepsilon_{2} \wedge \varepsilon_{3}$. With this we can see that $A^{*} \varepsilon_{1}=\varepsilon_{1}+a_{21} \varepsilon_{2}+b_{31} \varepsilon_{3}$. Similarly for $A^{*} \varepsilon_{2}$ and $A^{*} \varepsilon_{3}$. Now consider

$$
\begin{aligned}
\varepsilon_{1} \wedge \varepsilon_{2} & =A^{*} \varepsilon_{1} \wedge A^{*} \varepsilon_{2} \\
& =\left(\varepsilon_{1}+a_{21} \varepsilon_{2}+a_{31} \varepsilon_{3}\right) \wedge\left(a_{12} \varepsilon_{1}+\varepsilon_{2}+a_{32} \varepsilon_{3}\right) \\
& =\left(1-a_{12} a_{21}\right) \varepsilon_{1} \wedge \varepsilon_{2}+\left(a_{32}-a_{31} a_{12}\right) \varepsilon_{1} \wedge \varepsilon_{3}+\left(a_{21} a_{32}-a_{31}\right) \varepsilon_{2} \wedge \varepsilon_{3} .
\end{aligned}
$$

From this we can conclude that

$$
a_{12} a_{21}=0 \quad a_{32}=a_{31} a_{12} \quad a_{31}=a_{32} a_{21} .
$$

But by examining $\varepsilon_{2} \wedge \varepsilon_{3}$ and $\varepsilon_{3} \wedge \varepsilon_{1}$ we can arrive at

$$
\begin{array}{lll}
a_{23} a_{32}=0 & a_{12}=a_{13} a_{32} & a_{13}=a_{12} a_{23}, \\
a_{31} a_{13}=0 & a_{21}=a_{23} a_{31} & a_{23}=a_{21} a_{13} .
\end{array}
$$

Suppose $a_{12}=0$. Then $a_{32}=0$, and $a_{13}=0$. Then $a_{31}=0$, and $a_{23}=0$. Then $a_{21}=0$ and $a_{13}=0$. Hence $A=I$.
3. This problem is no longer assigned
4.
solution. 1. Assuming $\Psi=\Phi$, and denoting by S_{I} the set of injective maps from the set of k symbols to $\left\{i_{1}<\ldots<i_{k}\right\} \subset N$ with sgn : $S_{I} \rightarrow\{ \pm 1\}$ given by $\operatorname{sgn}(f \circ \sigma)=$ $\operatorname{sgn}(\sigma)$ where f is the map $j \mapsto i_{j}$, and $\sigma \in S_{k}$ we have that

$$
\begin{aligned}
& \left\langle\Psi\left(v_{1}\right) \wedge \cdots \wedge \Psi\left(v_{k}\right), \Psi\left(w_{1}\right) \wedge \cdots \wedge \Psi\left(w_{k}\right)\right\rangle= \\
& \quad\left\langle\sum_{i_{1}, \ldots, i_{k}} v_{1 i_{j}} \varepsilon_{i_{1}} \wedge \cdots \wedge v_{k i_{k}} \varepsilon_{i_{k}}, \sum_{j_{1}, \ldots, j_{k}} w_{1 j_{j}} \varepsilon_{j_{1}} \wedge \cdots \wedge w_{k j_{k}} \varepsilon_{j_{k}}\right\rangle \\
& = \\
& =\left\langle\sum_{i_{1}, \ldots, i_{k}} v_{1 i_{1}} \cdots v_{k i_{k}} \varepsilon_{i_{1}} \wedge \cdots \wedge \varepsilon_{i_{k}}, \sum_{j_{1}, \ldots, j_{k}} w_{1 j_{1}} \cdots w_{k j_{k}} \varepsilon_{j_{1}} \wedge \cdots \wedge \varepsilon_{j_{k}}\right\rangle \\
& =\sum_{i_{1}, \ldots i_{k}} \sum_{\sigma S_{k}} \operatorname{sgn}(\sigma) v_{1 i_{1}} \cdots v_{k i_{k}} w_{1 i_{\sigma(1)}} \cdots w_{k i_{\sigma(k)}} \\
& = \\
& =\sum_{\sigma \in S_{k}} \operatorname{sgn}(\sigma) \sum_{i_{1}, \ldots, i_{k}} v_{1 i_{1}} \cdots v_{k i_{k}} w_{\sigma(1) i_{1}} \cdots w_{\sigma(k) i_{k}} \\
& =
\end{aligned}
$$

2. The appropriate map needs to take e_{I} to some mutiple of $e_{N \backslash I}$, where $N=\{1, \ldots, n\}$. Then we must find the appropriate scaling. We will call it sgn (n, I) and is given by $\operatorname{sgn}(\sigma)$ for $\sigma \in S_{n, k}$, where $\sigma(j)=i_{j}$ for $1 \leq j \leq k$. Let us test this

$$
e_{I} \wedge * e_{J}=\operatorname{sgn}(\sigma) e_{I} \wedge e_{J}= \begin{cases}0 & \text { if } I \neq J \\ \operatorname{sgn}(\sigma) e_{i_{1}} \wedge \cdots \wedge e_{i_{k}} \wedge e_{i_{k+1}} \wedge \cdots e_{i_{n}} . & \end{cases}
$$

Now σ puts i_{1}, \ldots, i_{n} in the right order, hence this has the desired property. The property is linear, and hence holds for every vector (fix ω). Now we could suppose that $\omega \wedge B \eta=\langle\omega, \eta\rangle \varepsilon_{1} \wedge \cdots \wedge \varepsilon_{n}$, but by subtracting B and $*$ we may as well suppose that $\omega \wedge A \eta=0$ for every ω and η. Now fix $\zeta=A \eta$, and suppose $\omega \wedge \zeta=0$ for every ω, then we wish to show that $\zeta=0$. But $\varepsilon_{I} \wedge \zeta=\zeta_{N \backslash I} \varepsilon_{I} \wedge \varepsilon_{N \backslash I}$. If this is 0 for every I, then $\zeta=0$.
5.
solution. 1. Now it is sufficient to examine the action on a basis element. Consider $*\left(e^{I}\right)=\operatorname{sgn}(n, I) e^{N \backslash I}$, then $*\left(e^{N \backslash I}\right)=\operatorname{sgn}(n, N \backslash I) e^{N \backslash(N \backslash I)}=\operatorname{sgn}(n, N \backslash I) e^{I}$. Hence $* *\left(e^{I}\right)=\operatorname{sgn}(n, I) \operatorname{sgn}(n, N \backslash I) e^{I}$. Now let us consider $i_{1}<\cdots<i_{k}$ and $i_{k+1}<\cdots<i_{n}$, and let $\sigma(j)=i_{j}$, then $\operatorname{sgn}(n, I)=\operatorname{sgn}(n, I)$ whereas $\varsigma(j)=i_{k+j}$ for $1 \leq j \leq n-k$, and $\varsigma(j)=i_{j-(n-k)}$ for $n-k<j<n$, and $\operatorname{sgn}(\varsigma)=\operatorname{sgn}(n, N \backslash I)$. Then $\operatorname{sgn}(n, I) \operatorname{sgn}(n, N \backslash I)=\operatorname{sgn}\left(\varsigma^{-1} \circ \sigma\right)$, and the maps $\varsigma^{-1} \circ \sigma$ takes j to $j+(n-k)$ for $1 \leq j \leq k$ and to $j-k$ for $k<j \leq n$, and has $\operatorname{sign}(-1)^{k(n-k)}$.
2. From now on denote $\varepsilon_{N}=\varepsilon_{1} \wedge \cdots \wedge \varepsilon_{n}$, whenever n is the dimension of the space. This should read $A^{*} \circ *=* \circ A^{*}: \operatorname{Alt}^{k}\left(\mathbb{R}^{n}\right) \rightarrow \operatorname{Alt}^{n-k}\left(\mathbb{R}^{m}\right)$. Now consider

$$
\begin{aligned}
\omega \wedge A^{*}(* \eta)\left(v_{1}, \ldots, v_{n}\right) & =\overbrace{\operatorname{det} A^{t}}^{=1} \omega \wedge A^{*}(* \eta)\left(v_{1}, \ldots, v_{n}\right) \\
& =\omega \wedge A^{*}(* \eta)\left(A^{t} v_{1}, \ldots, A^{t} v_{n}\right) \\
& =A^{t *} \omega \wedge A^{t *} A^{*}(* \eta)\left(v_{1}, \ldots, A^{t} v_{n}\right) \\
& =A^{t *} \omega \wedge * \eta\left(v_{1}, \ldots, v_{n}\right) . \\
& =\left\langle A^{t *} \omega, \eta\right\rangle\left(v_{1}, \ldots, v_{n}\right) .
\end{aligned}
$$

Now we must show that $\left\langle L^{t *} \omega, \eta\right\rangle=\left\langle\omega, L^{*} \eta\right\rangle$ for any linear operator $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$. To see this consider

$$
\begin{aligned}
\left\langle L^{*} \varepsilon_{I}, \varepsilon_{J}\right\rangle & =\varepsilon_{I}\left(L e_{j_{1}}, \ldots, L e_{j_{k}}\right) \\
& =\sum_{\sigma \in S_{k}} \operatorname{sgn}(\sigma) \varepsilon_{i_{1}}\left(L e_{j_{\sigma(1)}}\right) \cdots \varepsilon_{i_{k}}\left(L e_{j_{\sigma(k)}}\right) \\
& =\sum_{\sigma \in S_{k}} \operatorname{sgn}(\sigma)\left\langle e_{i_{1}}, L e_{j_{\sigma(1)}}\right\rangle \cdots\left\langle e_{i_{k}}, L e_{j_{\sigma(k)}}\right\rangle \\
& =\sum_{\sigma \in S_{k}} \operatorname{sgn}(\sigma)\left\langle e_{i_{\sigma(1)}}, L e_{j_{1}}\right\rangle \cdots\left\langle L^{t} e_{i_{\sigma(k)}}, e_{j_{k}}\right\rangle \\
& =\left\langle\varepsilon_{I}, L^{t *} \varepsilon_{J}\right\rangle .
\end{aligned}
$$

Now we merely note that $\left\langle A^{t *} \omega, \eta\right\rangle=\left\langle\omega, A^{*} \eta\right\rangle$ to arrive at

$$
\omega \wedge A^{*}(* \eta)=\omega \wedge *\left(A^{*} \eta\right)
$$

6.

solution. 1. We note that a Euclidean ball is a convex set so for any $x, y \in B$ ant $s \in[0,1]$ we have that $s x+(t-s) y \in B$. Using this we draw a straight line between $\gamma(t)$ and $\tilde{\gamma}(t)$ given by

$$
H(s, t)=s \gamma(t)+(1-s)[(1-t) \gamma(0)+t \gamma(1)] .
$$

By convexity it is always in B, and for $t=0,1$ the path in s is constant.
2. Because any curve $\gamma: \mathbb{R}^{3} \backslash\{0\}$ has a compact image, and so has positive distance from 0 . Furthermore it is uniformly continuous, hence there is a piecewise linear approximation of γ, which we call γ_{ε} for which $\left\|\gamma \backslash \gamma_{\varepsilon}\right\|_{\infty}<\varepsilon$ Then the straight line homotopy $s \gamma_{\varepsilon}(t)+(1-s) \gamma(t)$ misses 0 . Now if we look at this curve projected to the unit sphere, it misses a point, θ_{0}, because it has finite length. Now in spherical coordinates $\gamma=(\rho, \theta)$. Then we take the homotopy given by $(s, t) \mapsto((1-s) \rho(t)+$ $\left.s \rho(0), \phi_{s}(\theta(t))\right)$, where $\phi(s)$ is the Möbius map with $\operatorname{sink} \theta(0)$, and source θ_{0}. (Under stereographic projection taking θ_{0} to ∞, they are given by

$$
\phi_{s}=(1-s) \theta(t)+s \theta(0) .
$$

