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1.

solution. 1. In general when faced with a proof for an insurmountable number of indices,
of a general length, it is good to proceed with induction. In this case we can make
the following inductive hypothesis for all (n x n)-matrices, B we have that

det B = Z sgn (U)bla(l) T bna(n)
oESy

Now assume for all £ € N and for all (k x k)-matrices A
k .
det A = Z(—l)lau det Ay;.
i=1

Now let k = n + 1 then

n+1

det A = Z(—l)iau Z sgn (0)a2(1,i)0(2) ** * nt1(1,i)o(nt1)
=1 UESn+1,U(1):1

Z sgn (0)010(1)-~-am(n)'

c€Sn+1

Then because the determinant formula is trivial for n = 1, by induction we have the
result.

2. We have by definition that

I WAERA Sn(vla cee vn) - Z sgn (O—)gl(vo(l)) e '5n(va(n))
O'GSn

= Z sgn (U)Ula(l) ** " Uno(n)
O'GSn
= det(vy,...,vp).



3. Now we must show that any alternating k-linear map « can be represented as
Z a]f}k det7
I

where det is the standard determinant in R¥. To do this, we define
ar =ale, ..., e;,).

Then we can examine

() (viy...,08) = Z Vlip * - Uki(€ips - o5 €4)

U1 5eenyik

= Z Z sgn (U)Ula(il) © Uko (i) O

ICN oceSy

= Z Z sgn (0) f1(v1)oq) - f1(V)o(ryair

ICN o€Sg

= Z ardet(fr(vi),. .., fr(vk))

ICN

= Z arfr det(vy, ..., vg).

ICN

2.

solution. O

1. Suppose v, = Zf;ll Xiv;. Then

k-1
w(vy,...,v5) = Z)\iw(’ul, ey UR—1, ;)
=1
=0.

as the two of the entries are equal. As a conclusion any alternating k-linear map on
V is 0 for dim V' < k as any collection of k vectors is linearly dependent.

2. We denote the permutation on k 4 [ symbols which maps i to [ 4+ for 1 <4 < k, and
maps k + j to j for 1 < j <, by . This permutation is idempotent, that is ¢? = id,



and has sign sgn (¢) = (—1)'*. We continue with the definition of the wedge product

WAT(UL, e, Uyy) = Z sgn (O'w(’l)g(l), R vg(k))T(vo(k+l) R Ug(k+l))

TESk+1,k

= Z Sgn (U)T(Uaog(l)a e 7vaog(l)w(vao<(l+l)a -5 Ugog(I4k)
TESk+1,k

= Z (_1)lksgn (U © g)’r(vaog(l)7 B vaog(l)w(vaog(l—i-l)v s avaog(l—i-k))
TESk+1,k

Ik
= (=" > sgn ()T (Wp1)s - Vp0)@(Vp(ir1)s - - Vphrt))
PESKk41,1
=T Aw(v1,..., V1)
3.
solution. 1. Suppose n = 2, then there is precisely one subset of the set of two elements,

with two elements, namely, the set itself. This is important for applying the struc-
ture theorem. The condition that L*(a) = « in R? says precisely that L*a(vi,v1) =
a(v1, v2), which by the structure theorem gives a(v1, v2) = adet(vy,v2). But L*a(vy,v2) =
a(L(v1), L(ve)) = adet L det(v1,v2). Thus det L = 1 is equivalent to L* is the iden-

tity on AltF.

2. Let g; i = 1,2,3 be a basis of R3*. Consider A*(e1) A A*(ea Ae3) = A*(e1 Aea Nez) =
det(A)€1 ANeg Nes = €1 Aeg Aes. With this we can see that A*e; = 1 +ag169 + b31€3.
Similarly for A*es and A*e3. Now consider

g1 Neg = A%e; A A¥ey
= (e1 + ag162 + azie3) A (a12e1 + €2 + azaes)

= (1 — ai2a21)e1 AN ea + (aze — az1a12)e1 A ez + (a21a32 — azi)ez A €s.
From this we can conclude that
ajpazy =0 azy = aziai2  as1 = azzao.
But by examining €5 A €3 and €3 A €1 we can arrive at
agzazz =0 a1z = aizaz2 a3 = aizass,

agra13 =0  ag = agzazr a3 = ag1013.

Suppose a1o = 0. Then agzs = 0, and a;3 = 0. Then ag; = 0, and ass = 0. Then
as] = 0 and ais = 0. Hence A = 1.



3. This problem is no longer assigned

4.

solution. 1. Assuming ¥ = &, and denoting by St the set of injective maps from the set
of k symbols to {i; < ... <ix} C N with sgn : St — {£1} given by sgn (foo) =
sgn (o) where f is the map j — i;, and o € Sy we have that

(Wor) A A (vg), U(wr) A A (wy)) =

< D v1sEn A AUk Sy Y wljﬁjl/\“'Awkjk6jk>

T1yeeylk J1yeeJk

:< Z Uli1"'vk}ik€’i1/\”'/\€ikv Z wl]lwk‘]kgjl/\/\gjk>

Ulyeensll Jlse-nsJk

= )0 sen (0)vr - Vkiy Wiy ) < Whiy g -

i1,...1x oSk
= E sgn (o) E Vliy * Uiy Wo(1)iy *** Wo (k)i
o€Sk 11500k

= det(v;, w;)

2. The appropriate map needs to take ey to some mutiple of e\ 7, where N = {1,...,n}.
Then we must find the appropriate scaling. We will call it sgn (n, ) and is given by
sgn (o) for o € Sy, i, where o(j) =4; for 1 < j < k. Let us test this

itl#J
er Nxey =sgn (o)er Ney =
{sgn (0)ei, N Nejg Neg ) Ne- =€y

Now o puts i1,...,4, in the right order, hence this has the desired property. The
property is linear, and hence holds for every vector (fix w). Now we could suppose
that w A Bn = (w,n)e1 A+ - A&y, but by subtracting B and * we may as well suppose
that w A An = 0 for every w and 7. Now fix ( = An, and suppose w A ¢ = 0 for every
w, then we wish to show that ¢ = 0. But 7 A¢ = (781 Aeny7- If this is O for every
I, then ( = 0.

O



solution. 1. Now it is sufficient to examine the action on a basis element. Consider
x(el) = sgn (n,1)eN\, then *(eM\V) = sgn (n, N \ I)eM\W\D = son (n, N \ I)el.
Hence # * (e!) = sgn (n, I)sgn (n, N \ I)e!. Now let us consider i; < --- < i} and
ihy1 < -+ <'ipn, and let o(j) = i;, then sgn (n, I) = sgn (n, I) whereas ¢(j) = i  for
1<j<n—k, and ¢(j) = ij_(n_p) for n —k < j <n, and sgn () = sgn (n, N \ I).
Then sgn (n, I)sgn (n, N\I) = sgn (s 'oo), and the maps ¢! oo takes j to j+(n—k)
for 1 < j <k and to j — k for k < j < n, and has sign (—1)k"=k),
2. From now on denote ey = €1 A --- A g,, whenever n is the dimension of the space.
This should read A* o x = o A* : Alt*(R™) — Alt" ¥(R™). Now consider
=1
—
w A A*(n)(v1, ... v,) = det AL w A A*(xn)(v1, . . ., vp)
=w A A*(xn) (A, ..., Alvy)
= A%w A A A*(xn) (ve, .. ., Alvy)
= A% w A (v, ..., vn).
= (A%w,n)(v1,...,vp).
Now we must show that (L™w,n) = (w, L*n) for any linear operator L : R" — R™.
To see this consider

<L*€],€J> = Ej(Lejl, e ,Lejk)

= Z sgn (0)e;, (Lejo'(l)) T Eig, (Leja(k))
= Z sgn (o) (e, Lejgu)) - (€4 Leja(k)>

= Z sgn (0){ei, .y, Lejy) -+ <Lteia(k> ) €5k )

€Sk
= <€],Lt*€J>.
Now we merely note that (A*w,n) = (w, A*n) to arrive at

wA A (xn) = w A x(A™n).

6.

solution. 1. We note that a Euclidean ball is a convex set so for any =,y € B ant s € [0, 1]
we have that sz + (t — s)y € B. Using this we draw a straight line between ~(¢) and
A(t) given by
H(s,t) = sy(t) + (1 = s)[(1 = 1)7(0) + tr(1)].

By convexity it is always in B, and for t = 0,1 the path in s is constant.



2. Because any curve v : R?\ {0} has a compact image, and so has positive distance
from 0. Furthermore it is uniformly continuous, hence there is a piecewise linear
approximation of v, which we call 7. for which ||y \ 7z|/cc < € Then the straight line
homotopy s7:(t) + (1 — s)y(t) misses 0. Now if we look at this curve projected to
the unit sphere, it misses a point, #p, because it has finite length. Now in spherical
coordinates v = (p,0). Then we take the homotopy given by (s,t) — ((1 — s)p(t) +
sp(0), ¢s(0(t))), where ¢(s) is the Mobius map with sink 6(0), and source y. (Under
stereographic projection taking 6y to oo, they are given by

bs = (1 — 8)0(t) + s0(0).



