Introduction to differential forms

model solutions 10

Jan Cristina

1.

solution. 1. The maps $I_{\#}$ and $J_{\#}$ are chain maps if they commute with the exterior derivative. But $I_{k}=\left(i_{1}^{*}, i_{2}^{*}\right)$, and hence

$$
\begin{aligned}
I_{k} \circ d & =\left(i_{1}^{*} d, i_{2}^{*} d\right) \\
& =\left(d i_{1}^{*}, d i_{2}^{*}\right) \\
& =d \circ I_{k-1} .
\end{aligned}
$$

Similarly

$$
\begin{aligned}
J_{k} \circ d & =\left(j_{1}^{*}-j_{2}^{*}\right) d \\
& =d\left(j_{1}^{*}-j_{2}^{*}\right) \\
& =d J_{k-1} .
\end{aligned}
$$

2. The goal is to show that ω_{1} and ω_{2} are in fact smooth. The proof for ω_{2} is essentially the same as that for ω_{1}, so we will only show it for ω_{1}. For $x \in U_{1} \cap U_{2}$ and $U_{1} \backslash \bar{U}_{2}$ this is immediate, as ω_{1} is the product of two smooth functions. Now choose $x \in \partial U_{2} \cap U_{1}$. Then $\operatorname{dist}\left(x, \operatorname{spt} \phi_{2}\right)>0$, hence $\left.\phi_{2}\right|_{B(x, \varepsilon)} \equiv 0$ for some ε. Consequently $\omega \phi_{2} \equiv 0$ in $B(x, \varepsilon)$, hence ω_{1} is smooth about $x \in \partial U_{2} \cap U_{1}$.
3.

solution. 1. Let $U=\mathbb{R}^{3} \backslash\left\{(x, y, 0) \in \mathbb{R}^{3}: y \leq 0\right\}$ and $V=\mathbb{R}^{3} \backslash\left\{(x, y, 0) \in \mathbb{R}^{3}: y \geq 0\right\}$. Then $\mathbb{R}^{3} \backslash L=U \cup V, U$ and V are star shaped, and $U \cap V=\mathbb{R}^{3} \backslash\left\{(x, y, 0) \in \mathbb{R}^{3}\right\}$, is a disjoint union of two star shaped domains. By Mayer-Vietoris

$$
\cdots \rightarrow H^{k-1}(U \cap V) \rightarrow H^{k}(U \cup V) \rightarrow H^{k}(U) \oplus H^{k}(V) \rightarrow H^{k}(U \cap V) \rightarrow \cdots
$$

From this we get for $k=0,1$,

$$
0 \rightarrow H^{0}(U \cup V) \rightarrow \mathbb{R} \oplus \mathbb{R} \xrightarrow{J_{0}^{*}} \mathbb{R}^{2} \rightarrow H^{1}(U \cup V) \rightarrow H^{1}(0)
$$

We know that $H^{0}\left(U_{1}\right)$ is given by the locally constant functions, so the kernel of J_{0}^{*} is given by $\{(c, c): c \in \mathbb{R}\}$ and so $H^{0}(U \cup V)=\mathbb{R}$. From this it also follows that $H^{1}(U \cup V)=\mathbb{R}$. For $k>1$

$$
0 \rightarrow H^{k}(U \cup V) \rightarrow 0 \oplus 0 \rightarrow 0
$$

so $H^{k}(U \cup V)=0$.
2. The set $\mathbb{R}^{3} \backslash L$ is homotopic to $\mathbb{R}^{2} \backslash\{0\}$, whose cohomology was calculated in lectures as $H^{0}\left(\mathbb{R}^{2} \backslash\{0\}\right)=\mathbb{R}=H^{1}\left(\mathbb{R}^{2} \backslash\{0\}\right)$.
3. We can use theorem "A", setting $A=\{\mathbb{R} \times\{0\}$, then for $k \geq 1$

$$
H^{k+1}\left(\mathbb{R}^{3} \backslash A \times\{0\}\right) \cong H^{k}\left(\mathbb{R}^{2} \backslash A\right)
$$

and

$$
H^{0}\left(\mathbb{R}^{3} \backslash A \times\{0\}\right) \cong \mathbb{R} \quad H^{1}\left(\mathbb{R}^{3} \backslash A \times\{0\}\right) H^{0}\left(\mathbb{R}^{2} \backslash A\right) / \mathbb{R}
$$

Going down one dimension yields $\mathbb{R}^{2} \backslash A$ is a disjoint union of two star shaped domains so $H^{k}\left(\mathbb{R}^{2} \backslash A\right)=0$ for $k \geq 1$ and $H^{0}\left(\mathbb{R}^{2} \backslash A\right) \cong \mathbb{R}^{2}$.
3.
solution. We once again use excision noting that $\mathbb{R}^{2} \backslash S=D \cup A$ where D is the unit disk and A is homotopic to $\mathbb{R}^{2} \backslash\{0\}$, hence

$$
H^{*}\left(\mathbb{R}^{2} \backslash S\right)=\left(\mathbb{R}^{2}, \mathbb{R}, 0,0, \cdots\right)
$$

Hence

$$
\begin{gathered}
H^{*}\left(\mathbb{R}^{3} \backslash S\right)=(\mathbb{R}, \mathbb{R}, \mathbb{R}, 0, \cdots), \\
H^{*}\left(\mathbb{R}^{n} \backslash S\right)=(\mathbb{R}, \overbrace{0, \cdots, 0}^{n-3 \text { times }}, \mathbb{R}, \mathbb{R}, 0,0, \cdots) .
\end{gathered}
$$

4.

solution. We note first that T is a connected open set (as is $T \backslash S$), so their zeroth cohomology groups are both \mathbb{R}. We use Mayer-Vietoris for $U=T$, and $V=\mathbb{R}^{3} \backslash S$, Then $T \backslash S=U \cap V$, and $U \cup V=\mathbb{R}^{3}$:

$$
\begin{aligned}
0 \rightarrow \mathbb{R} & \rightarrow \mathbb{R} \oplus \mathbb{R} \rightarrow \mathbb{R} \rightarrow 0 \rightarrow H^{1}(T) \oplus \mathbb{R} \\
& \rightarrow H^{1}(T \backslash S) \rightarrow 0 \rightarrow H^{2}(T) \oplus \mathbb{R} \rightarrow H^{2}(T \backslash S) \rightarrow 0 \rightarrow H^{3}(T) \rightarrow H^{3}(T \backslash S) \rightarrow 0 .
\end{aligned}
$$

Let $S^{+}=\left\{\theta \in S: \Re(\theta>-1 / 2)\right.$ and $S^{-}=\{\theta \in S: \Re(\theta)<1 / 2\}$. Let $U=\phi\left(B^{2} \times S^{+}\right)$ and $V=\phi\left(B^{2} \times S^{-}\right)$. Then U is homeomorphic to V, and are both diffeomorphic to balls in \mathbb{R}^{3}, and $U \cap V$ is diffeomorphic to the disjoint union of two balls in \mathbb{R}^{3}, so

$$
0 \rightarrow \mathbb{R} \rightarrow \mathbb{R} \oplus \mathbb{R} \rightarrow \mathbb{R}^{2} \rightarrow H^{1}(T) \rightarrow 0 \rightarrow 0 \rightarrow H^{2}(T) \rightarrow 0 \rightarrow 0 \rightarrow H^{3}(T) \rightarrow 0
$$

Hence $H^{1}(T) \cong \mathbb{R}$ and $H^{k}(T)=0$ for $k \geq 2$. Hence

$$
H^{2}(T \backslash S)=\left(\mathbb{R}, \mathbb{R}^{2}, \mathbb{R}, 0,0, \cdots\right)
$$

5. l
solution. Let $i^{*}: \Omega_{c}^{k}\left(U_{1} \cap U_{2}\right) \rightarrow \Omega_{c}^{k}\left(U_{l}\right)$, and $j_{l}^{*}: \Omega_{c}^{k}\left(U_{l}\right) \rightarrow \Omega_{c}^{k}\left(U_{1} \cup U_{2}\right)$. Then define $I_{k}:=i_{1}^{*} \oplus i_{2}^{*}$, and $J_{k}:=j_{1}^{*}-j_{2}^{*}$. First we must show that I_{k} is injective: assume $I_{k}(\omega)=0$, then $i_{1}^{*}(\omega)=0=i_{2}^{*}(\omega)$. Then $\omega=0$. Hence I_{k} is injective.

Now take $\omega \in \Omega_{c}^{k}\left(U_{1} \cup U_{2}\right)$. Let ϕ_{1}, ϕ_{2} be a partition of unity subordinate to U_{1} and U_{2}. Then $\left.\phi_{1} \omega,-\phi_{2} \omega\right)$ is in $\Omega_{c}^{k}\left(U_{1}\right) \oplus \Omega_{c}^{k}\left(U_{2}\right)$, and maps under J_{k} to ω.

Lastly suppose $J_{k}\left(\omega_{1}, \omega_{2}\right)=0$, then $j_{1}^{*}(\omega)=j_{2}^{*}\left(\omega_{2}\right)$. But then ω_{1} and ω_{2} are compactly supported in $U_{1} \cap U_{2}$, and hence equal. So $\left(\omega_{1}, \omega_{2}\right)=I_{k}(\omega)$.

6.

solution. Let $U^{\prime}=U \backslash A$, and for each $x \in U$ choose an open set U_{x} such that $|f(z)-f(x)|<$ $\varepsilon^{\prime}(z)$ for all $z \in U_{x}$. If $x \in U^{\prime}$ choose $U_{x} \subset U^{\prime}$, and if $x \in A$ choose $U_{x} \subset W$. Then let choose a locally finite partition of unity ϕ_{i} supported in $U_{i} \in U_{x_{i}}$. Let $\phi_{W}=\sum_{x_{i} \in A} \phi_{i}$. Then $\phi_{W} \mid A \equiv 1$, and $\operatorname{spt}\left(\phi_{W}\right) \subset W$. This is because if $x \in \operatorname{spt}\left(\phi_{i}\right) \operatorname{implies} U_{i} \cap A \neq \varnothing$, which implies $x_{i} \in A$. But then $\sum_{\operatorname{spt}\left(p h i_{i}\right) \ni x} \phi_{i}(x)=1$ for every x, and so $\phi_{W}(x)=0$. Furthermore if $x_{i} \in A$, then $U_{i} \subset W$ so $\operatorname{spt}\left(\phi_{i}\right) \subset W$.

Now define

$$
g(x)=\phi_{W}(x) f(x)+\sum_{x_{i} \in U^{\prime}} \phi_{i}(x) f\left(x_{i}\right)
$$

Then g is smooth because $f(x)$ is smooth on the support of ϕ_{W}, and ϕ_{i} is smooth. Now

$$
\begin{aligned}
|g(x)-f(x)| & \leq \phi_{W} f(x)+\sum_{x_{i} \in U^{\prime}} \phi_{i}(x) f\left(x_{i}\right)-\phi_{W} f(x)-\sum_{x_{i} \in U^{\prime}} \phi_{i}(x) f(x) \\
& \leq \sum_{x_{i} \in U^{\prime}} \phi_{i}(x)\left|f\left(x_{i}\right)-f(x)\right| \\
& \leq \sum_{x_{i} \in U^{\prime}} \phi_{i}(x) \varepsilon^{\prime}(x) \\
& \leq \varepsilon^{\prime}(x)
\end{aligned}
$$

Now choose $\varepsilon^{\prime}(x):=\min \left\{\varepsilon(x), \operatorname{dist}\left(f(x), V^{c}\right) / 2\right)$, then

$$
\begin{aligned}
\operatorname{dist}\left(g(x), V^{c}\right) & \geq \operatorname{dist}\left(f(x), V^{c}\right)-|g(x)-f(x)| \\
& \leq \operatorname{dist}\left(f(x), V^{c}\right) / 2>0 .
\end{aligned}
$$

Hence $g(x) \in V$, and $g: U \rightarrow V$.

