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1.

solution. 1. The maps I# and J# are chain maps if they commute with the exterior
derivative. But Ik = (i∗1, i

∗
2), and hence

Ik ◦ d = (i∗1d, i
∗
2d)

= (di∗1, di
∗
2)

= d ◦ Ik−1.

Similarly

Jk ◦ d = (j∗1 − j∗2)d
= d(j∗1 − j∗2)
= dJk−1.

2. The goal is to show that ω1 and ω2 are in fact smooth. The proof for ω2 is essentially
the same as that for ω1, so we will only show it for ω1. For x ∈ U1∩U2 and U1\U2 this
is immediate, as ω1 is the product of two smooth functions. Now choose x ∈ ∂U2∩U1.
Then dist(x, sptφ2) > 0, hence φ2|B(x,ε) ≡ 0 for some ε. Consequently ωφ2 ≡ 0 in
B(x, ε), hence ω1 is smooth about x ∈ ∂U2 ∩ U1.

2.

solution. 1. Let U = R3 \ {(x, y, 0) ∈ R3 : y ≤ 0} and V = R3 \ {(x, y, 0) ∈ R3 : y ≥ 0}.
Then R3 \ L = U ∪ V , U and V are star shaped, and U ∩ V = R3 \ {(x, y, 0) ∈ R3},
is a disjoint union of two star shaped domains. By Mayer-Vietoris

· · · → Hk−1(U ∩ V )→ Hk(U ∪ V )→ Hk(U)⊕Hk(V )→ Hk(U ∩ V )→ · · ·

From this we get for k = 0, 1,

0→ H0(U ∪ V )→ R⊕ R
J∗0→ R2 → H1(U ∪ V )→ H1(0).
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We know that H0(U1) is given by the locally constant functions, so the kernel of J∗0
is given by {(c, c) : c ∈ R} and so H0(U ∪ V ) = R. From this it also follows that
H1(U ∪ V ) = R. For k > 1

0→ Hk(U ∪ V )→ 0⊕ 0→ 0,

so Hk(U ∪ V ) = 0.

2. The set R3 \L is homotopic to R2 \ {0}, whose cohomology was calculated in lectures
as H0(R2 \ {0}) = R = H1(R2 \ {0}).

3. We can use theorem “A”, setting A = {R× {0}, then for k ≥ 1

Hk+1(R3 \A× {0}) ∼= Hk(R2 \A)

and
H0(R3 \A× {0}) ∼= R H1(R3 \A× {0})H0(R2 \A)/R.

Going down one dimension yields R2\A is a disjoint union of two star shaped domains
so Hk(R2 \A) = 0 for k ≥ 1 and H0(R2 \A) ∼= R2.

3.

solution. We once again use excision noting that R2 \ S = D ∪A where D is the unit disk
and A is homotopic to R2 \ {0}, hence

H∗(R2 \ S) = (R2,R, 0, 0, · · · ).

Hence
H∗(R3 \ S) = (R,R,R, 0, · · · ),

H∗(Rn \ S) = (R,
n−3 times︷ ︸︸ ︷
0, · · · , 0,R,R, 0, 0, · · · ).

4.

solution. We note first that T is a connected open set (as is T \ S), so their zeroth co-
homology groups are both R. We use Mayer-Vietoris for U = T , and V = R3 \ S, Then
T \ S = U ∩ V , and U ∪ V = R3:

0→ R→ R⊕ R→ R→ 0→ H1(T )⊕ R
→ H1(T \ S)→ 0→ H2(T )⊕ R→ H2(T \ S)→ 0→ H3(T )→ H3(T \ S)→ 0.
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Let S+ = {θ ∈ S : <(θ > −1/2) and S− = {θ ∈ S : <(θ) < 1/2}. Let U = φ(B2 × S+)
and V = φ(B2 × S−). Then U is homeomorphic to V , and are both diffeomorphic to balls
in R3, and U ∩ V is diffeomorphic to the disjoint union of two balls in R3, so

0→ R→ R⊕ R→ R2 → H1(T )→ 0→ 0→ H2(T )→ 0→ 0→ H3(T )→ 0.

Hence H1(T ) ∼= R and Hk(T ) = 0 for k ≥ 2. Hence

H2(T \ S) = (R,R2,R, 0, 0, · · · ).

5. l

solution. Let i∗ : Ωk
c (U1 ∩ U2) → Ωk

c (Ul), and j∗l : Ωk
c (Ul) → Ωk

c (U1 ∪ U2). Then define
Ik := i∗1⊕ i∗2, and Jk := j∗1 − j∗2 . First we must show that Ik is injective: assume Ik(ω) = 0,
then i∗1(ω) = 0 = i∗2(ω). Then ω = 0. Hence Ik is injective.

Now take ω ∈ Ωk
c (U1 ∪ U2). Let φ1, φ2 be a partition of unity subordinate to U1 and

U2. Then φ1ω,−φ2ω) is in Ωk
c (U1)⊕ Ωk

c (U2), and maps under Jk to ω.
Lastly suppose Jk(ω1, ω2) = 0, then j∗1(ω) = j∗2(ω2). But then ω1 and ω2 are compactly

supported in U1 ∩ U2, and hence equal. So (ω1, ω2) = Ik(ω).

6.

solution. Let U ′ = U \A, and for each x ∈ U choose an open set Ux such that |f(z)−f(x)| <
ε′(z) for all z ∈ Ux. If x ∈ U ′ choose Ux ⊂ U ′, and if x ∈ A choose Ux ⊂ W . Then let
choose a locally finite partition of unity φi supported in Ui ∈ Uxi . Let φW =

∑
xi∈A φi.

Then φW |A ≡ 1, and spt(φW ) ⊂ W . This is because if x ∈ spt(φi) implies Ui ∩ A 6= ∅,
which implies xi ∈ A. But then

∑
spt(phii)3x φi(x) = 1 for every x, and so φW (x) = 0.

Furthermore if xi ∈ A, then Ui ⊂W so spt(φi) ⊂W .
Now define

g(x) = φW (x)f(x) +
∑

xi∈U ′

φi(x)f(xi).

Then g is smooth because f(x) is smooth on the support of φW , and φi is smooth.
Now

|g(x)− f(x)| ≤ φW f(x) +
∑

xi∈U ′

φi(x)f(xi)− φW f(x)−
∑

xi∈U ′

φi(x)f(x)

≤
∑

xi∈U ′

φi(x)|f(xi)− f(x)|

≤
∑

xi∈U ′

φi(x)ε′(x)

≤ ε′(x).
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Now choose ε′(x) := min{ε(x), dist(f(x), V c)/2), then

dist(g(x), V c) ≥ dist(f(x), V c)− |g(x)− f(x)|
≤ dist(f(x), V c)/2 > 0.

Hence g(x) ∈ V , and g : U → V .
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