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1.

solution. This problem would be easier if the condition∫ 1

0
〈X(γ(t)), γ̇(t)〉 dt =

∫ 1

0
〈Y (γ(t), ˙γ(t)〉 dt (1)

were stated to hold for every piecewise C1-loop. But we need not worry as in fact the two
are equivalent. We can rewrite (1) as∫ 1

0
〈Z(γ(t)), γ̇(t)〉 dt = 0,

where Z = X −Y . There are at least two ways of doing this. One is the method of smooth
mollifiers, whereby we can construct smooth approximations to piecewise C1 curves, and
another is to explicitly construct a C1 smooth curve which is equivalent to a piecewise C1.
The way to do this is to construct a new parametrisation whose derivative vanishes at the
points of discontinuity. To do this we will need a change of variables (0, 1) → (0, 1) such
that the derivative vanishes at 0 and 1. We may as well see if a polynomial fits our needs,
so we need a polynomial p(x) for which p(0) = 0, p(1) = 1, p′(0) = 0, p′(1) = 0. That is
four equations, so we need a minimum of four parameters, so a cubic equation

p(x) = a x3 + b x2 + c x+ d,

yielding
d = 0

a + b + c + d = 1
c = 0

3 a + 2 b + c = 0

.

Solving this yields a = −2 andb = 3, hence p(x) = −2x3 + 3x2. Furthermore it is easy
to verify that p′(x) > 0 for 0 < x < 1, so p(x) : [0, 1] → [0, 1] homeomorphicall, and
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diffeomorphically on the interior. Now let γ : [0, 1] → Rn be a piecewise C1 curve with
derivative discontinuous on 0 < t1 < · · · < tk < 1. Now consider the the curve

σk−1 : t 7→

{
(γ(tkp(t/tk)) 0 ≤ t < tk

(γ((1− tk)p[(t− tk)/(1− tk)] + tk) tk ≤ t < 1.

Now the curve sigma is clearly C1 for tkp(t/tk) 6= ti where i = 1, . . . k − 1. which by the
diffeomorphism property of p in the interior holds for precisely k − 1 points. Furthermore
σk−1 is C1 for tk < t < 1. Lastly we must show that σk−1 has continuous derivative at tk.
But it’s derivative is given by

σ′k−1 : t 7→

{
(γ′(tkp(t/tk))p′(t/tk) 0 ≤ t < tk

(γ′((1− tk)p[(t− tk)/(1− tk)] + tk)p′[(t− tk)/(1− tk)] tk ≤ t < 1.

Now γ has finite left and right limits around tk, and p′ has value 0, so σ′k−1 is continuous
at tk and has limit 0.

Now relabel p1(t) := tkp(t/tk) and p2(t) := (1−tk)p[(t−tk)/(1−tk)]+tk. If we calculate
the integral condition for σk−1 we arrive at∫ 1

0
〈Z(σk−1(t), σ′k−1(t)〉 dt =

∫ tk

0
〈Z(σk−1(t), σ′k−1(t)〉 dt+

∫ 1

tk

〈Z(σk−1(t)), σ′k−1(t)〉 dt.

=
∫ tk

0
〈Z(γ ◦ p1(t)), γ̇ ◦ p1(t)p′1(t)〉 dt+

∫ 1

tk

〈Z(γ ◦ p2(t)), γ̇ ◦ p2(t)p′2(t)〉 dt,

=
∫ tk

0
〈Z(γ ◦ p1(t)), γ̇ ◦ p1(t)〉p′1(t) dt+

∫ 1

tk

〈Z(γ ◦ p2(t)), γ̇ ◦ p2(t)〉p′2(t) dt,

We can then apply the change of variable formula which yields∫ 1

0
〈Z(σk−1(t), σ′k−1(t)〉 dt =

∫ tk

0
〈Z(γ(t)), γ̇(t)〉 dt+

∫ 1

tk

〈Z(γ(t)), γ̇(t)〉 dt

=
∫ 1

0
〈Z(γ(t)), γ̇(t)〉 dt.

This can be repeated inductively, so that we can construct a map σ0 which is C1 for which∫ 1

0
〈Z(σ0(t), σ′0(t)〉 dt =

∫ 1

0
〈Z(γ(t)), γ̇(t)〉 dt.

Thus we know that property (1) holds for C1 loops if and only if it holds for piecewise
C1 loops.
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Now we want to show that if Z has property (1), for all piecewise C1 loops then Z = ∇f
for some f . Clearly the f wont be unique as we can always add a constant C, in which case
∇f = ∇f +∇C.

Let γ1 and γ2 be two loops with initial point x0 ∈ Ω endpoint x1 ∈ Ω. Then denote γ̄2

the curve γ2(1− t). In this case∫ 1

0
〈Z(γ1(t)), γ̇1〉 dt =

∫ 1

0
〈Z(γ2(t)), γ̇2〉 dt.

This is because the curve σ given by following γ1 and then γ̄2, is a closed piecewise C1

curve, and so

0 =
∫ 1

0
〈Z(σ(t)), σ̇(t)〉 dt

=
∫ 1

0
〈Z(γ1(t)), γ̇1(t)〉 dt+

∫ 1

0
〈Z(γ̄2(t)) ˙̄γ2(t)〉 dt

=
∫ 1

0
〈Z(γ1(t)), γ̇1(t)〉 dt−

∫ 1

0
〈Z(γ2(t))γ̇2(t)〉 dt.

Thus the map

f(x) =
∫ 1

0
〈Z(γ(t)), γ̇(t)〉 dt

where γ is a piecewise C1 curve in Ω connecting x0 to x is well defined.
Then let us try to calculate ∂xif(x). To do this let us denote by γ a chosen curve from

x0 to x. Let ei denote the ith standard basis vector

f(x+ h ei) =
∫ 1−h

0
Z((1− h)γ(t/(1− h)), γ̇(t/(1− h))〉 dt+

∫ h

0
Z(x+ t ei), ei〉 dt

=
∫ 1

0
〈Z(γ), γ̇〉 dt+

∫ h

0
Zi(x+ tei) dt

= f(x) +
∫ h

0
Zi(x+ tei) dt.

So if we calculate the derivative

∂xif = lim
h→0

1
h

[f(x+ h ei)− f(x)]

= lim
h→0

1
h

∫ h

0
Zi(x+ tei) dt.

= Zi(x).

Consequently ∇f = Z.
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2.

solution. One of the most useful intuitions to develop about differential forms is that they
are sorts of spatial distributions of directed measures. In this case we are integrating along
circles, and we want the restricted measures to always integrate to a constant. The length
of the circles is linear in r =

√
x2 + y2, so we want the magnitude of ω to behave as the

inverse of r.
Another thing we want is for the form to restrict to a nonzero form on the circles,

so we intuitively want it to follow the circles’ directions. The unit “normal” direction is
given by the radial form dr = x dx/r + y dy/r. A perpendicular direction to this would be
−y dx/r + x dy/r. Then to get the appropriate scaling, we divide once more by r, so we
arrive at

ω := −y dx/r2 + x dy/r2.

Let us now try to integrate∫ 1

0
−γ2(t)γ̇1/r

2 + γ1(t)γ̇2/r
2 dt =

∫ 1

0
−r sin(2πt) · (−r2πsin(t))/r2 + r cos(2πt) r2π cos(2πt)/r2 dt

=
∫ 1

0
2π(sin2(2πt) + cos2(2πt)) dt

= 2π.

Thus ω satisfies the desired property.

3.

solution. 1. The difficulty in this is to show that addition is well defined. The operation
(α, β) 7→ α+β is symmetric, and hence abelian, so we need only show that for α ∼ α̂,
the following hold

a α ∼ a α̂ α+ β ∼ α̂+ β.

If α ∼ α̂ then α′(0) = α̂′(0) but then a α′(0) = a α̂′(0), so a α ∼ a α̂. And similarly
(α+ β)′(0) = α′(0) + β′(0) = α̂′(0) + β′(0) = (α̂+ β)′(0).

Now we must show that the vector space properties hold. Firstly we have an additive
identity and additive inverse given by [x0], and [−α + 2x0], where x0 denotes the
constant map. As for distributivity, we have that a([α]+[β]) = a[α+β] = [aα+aβ] =
a[α] + a[β].

2. Here we must only show that for α ∼ γ, φ ◦ α ∼ φ ◦ γ. But by the chain rule
(φ ◦ α)′(0) = Dφα(0) · α′(0) = Dφx0 · γ′(0) = (φ ◦ γ)′(0).

3. We must once again construct explictly the map. But let us use the map Φx0 :
(x0, ei) 7→ [x0 + tei] defined on the standard basis of Tx0Rn. We will then construct
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an explicit inverse, given by [γ] 7→ (x0, γ
′(0)). Then we must show that these are left

and right inverses, i.e. firstly that (x0 + tei)′ = ei which is trivial, and then that
γ ∼ x0 + tγ′(0). But this to is trivial as (x0 + tγ′(0))′ = γ′(0).

As for the translation invariance we first note that Dτ = I, so Φx1(Dτ(v)) = [x1 +tv],
while Φx0(v) = [x0+tv], so τ∗(Φx0(v)) = [τ(x0+tv)] = [x0+tv+(x1−x0)] = [x1+tv].
Hence the two are equal.

4. By definition

(df)x0(v) = lim
t→0

1
t
(f(x0 + tv)− f(x0)).

But this is the same as (f ◦ γ)′(0) where γ(t) = x0 + tv, and [γ] = Φ(v).

5. This should read

T̃x0V := {[γ] ∈ T̃x0Rn : ∃α ∼ γ and α(−1, 1) ⊂ V }.

This makes T̃x0V well defined. Then clearly Φ(x0, v) = [x0 + tv] takes (x0, v) to a rep-
resentative with a member whose image is contained in V , namely the representative
x0 + tv. Now given a curve γ contained in V , implies that x0 + tγ′(0) is contained in
V , but γ ∼ x0 + tγ′(0). Hence Φ(γ′(0)) = [γ].

4.

solution. This is a simple proof by induction. Any linear map A can be decomposed into
a product of simple matrices, A = E1 × · · · × Ek. Let us formalise this: Assume for all
products of k simple matrices we have that |Ek · · ·E1(A)| = |det(Ek · · ·E1)||A|, then we
will show that for any product of k+ 1 simple matrices we have that |Ek+1Ek · · ·E1(A)| =
|det(Ek+1Ek · · ·E1)||A|, and of course how we will show this is for any simple matrix E,
we will show that |E(A)| = |detE||A|.

Simple matrices take one of three forms. A row swap, Si,j , with determinant detS = −1.
A row scaling Λi,λ with det Λi,λ = λ and a shear where a multiple of one row is added to
another, H with detH = 1. To complete the proof we must show that the property holds
only for an n-interval, I = I1 × · · · × In, with Ii = (ai, bi). By the definition of Lebesgue
measure we can cover cover an arbitrary set A, with a disjoint collection of open n-intervals
such that their union, U covers A and the U \ A < ε for arbitrary ε Simultaneous the
difference can be covered by a family of disjoint squares who’s total volume is 2ε. Now A
will map a square into a square of uniformly scaled by α , hence the square covering will
be mapped into a square covering of measure α2ε. These can be chosen arbitrarily small,
so it is sufficient to examine how simple matrices act on an n-interval.

Now Si,j(I) = I1 × · · · × Ij × · · · × Ii × · × In, and so |Si,j(I)| = II| = |detSi,j ||I|.
And Λi,λ(I) = I1 × · · · × λIi × · · · × In, so |Λi,λ(I)| = |λ||I| = |det Λi,λ||I|. The hardest is
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a shear, because it doesn’t map an interval to an interval. The shear Hi,j,λ maps the set
I =

∏
Il to

{(x1, . . . , xn) ∈ Rn : xl ∈ Il for l 6= j, λxi + aj < xj < λxi + bj .

In this case then we can apply Fubini to calculate that

|Hi,j,λ

∫
I1

· · ·
∫
In

∫ λxi+bj

λxi+aj

dxj dxn . . . dx̂
j . . . dx1 = |bj − aj |

∏
l 6=j
|bl − al| = |I||detHi,j,λ|.

5.

solution. 1. A linear map is specified by its action on a basis. Let εi be the map that
takes ei to 1 and εj to 0 if j 6= i. Now given a dual element α, then α =

∑
i α(ei)ε(i)

to see this consider the action

[α−
∑
i

α(ei)εi](ej) = α(ej) +
∑
i

α(ei)δij = α(ej)− α(ej) = 0

. To see the linear independence. Suppose that
∑

i λiεi(ej) but then λj = 0 for all j.

2. Let fij be the linear map which takes ei to fj and maps ej to 0 for j 6= i. Then let
A be a linear map. Let A(ei) =

∑
j aije

′
j , and consider

(A−
∑
i,j

aijfij)(ek) = A(ek)−
∑
i,j

aijfij(ek) =
∑
j

akje
′
j −

∑
j

akje
′
j = 0

Then for linear independence suppose
∑

i,j aijfij = 0, then∑
i,j

aijfij(ek) =
∑
j

akje
′
j = 0.

By the basis property of e′j we have that akj = 0 for all j, but k was also arbitrary.

6.

solution. The idea of a homotopy is to construct a family of paths between the values of
one map and that of another. In this case we have to construct a continuous family from
X = R3 \ [0,∞]×{(0, 0)} to a single point. An appropriate point is (−1, 0, 0). Then every
ray from this point to every point is contained in X. Hence we can take the homotopy

H(t, x) = t(−1, 0, 0) + (1− t)x,
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which is the identity for t = 0 and is (−1, 0, 0) for t = 1. Lastly H(t, x) ∈ X for all t and
x. This can be seen if one of x2 or x3 is not equal to zero, then without loss of generality
H(t, x)2 = 0 until t = 1. If x2 = x3 = 0 then x1 < 0 but then H(t, x)1 < 0 for all t so is in
X.
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