Introduction to Differential forms Spring 2011 Exercise 12 (for Wednesday May. 4)

*1. Let (U, φ) be a chart on a smooth manifold M; $\varphi : U \to \mathbb{R}^n$, $\varphi = (\varphi_1, \ldots, \varphi_n)$. Show that $(d\varphi_1)_p, \ldots, (d\varphi_n)_p$ is a basis of T_p^*M for $p \in U$. Show also that $\{(d\varphi_I)_p : I = (i_1, \ldots, i_k), 1 \leq i_1 < \cdots < i_k \leq n\}$ is a basis of $\operatorname{Alt}^k(T_pM)$, where $d\varphi_I = d\varphi_{i_1} \wedge \cdots \wedge d\varphi_{i_k}$. Moreover, verify that $\varphi^*(dx_k) = d\varphi_k$ for every k.

*2. Let $\hat{S}_k \colon \Omega^{k+1}(B^n \times \mathbb{R}) \to \Omega^k(B^n)$ be the operator in the proof of Poincaré homotopy operator, that is, $\hat{S}_k(\sum_I f_I dt \wedge dx_I + \sum_J g_J dx_J)_x = \sum_I \left(\int_0^1 f_I(x,t) d\mathcal{L}^1(t) \right) dx_I.$

- (i) Show that $\hat{S}_k(\omega)_x(v_1,\ldots,v_k) = \int_0^1 \omega_{(x,t)}(\frac{\partial}{\partial t},v_1,\ldots,v_k) d\mathcal{L}^1(t)$ for every $\omega \in \Omega^k(B^n \times \mathbb{R}).$
- (ii) Let M be a smooth manifold and (U, φ) be a chart on M. Show that $\varphi^* \circ \hat{S}_k \circ ((\varphi \times \mathrm{id}_{\mathbb{R}})^{-1})^* (\omega)_p(v_1, \ldots, v_k) = \int_0^1 \omega_{(x,t)}(\frac{\partial}{\partial t}, v_1, \ldots, v_k) \, d\mathcal{L}^1(t)$ for $\omega \in \Omega^k(U \times \mathbb{R}), \ p \in U$ and $v_1, \ldots, v_k \in T_pM$.
- (iii) Show that, for every $k \ge 0$, there exists $\hat{S}_k^M : \Omega^{k+1}(M \times \mathbb{R}) \to \Omega^k(M)$ so that $\iota_1^* - \iota_0^* = d\hat{S}_k^M + \hat{S}_k^M d$, where $\iota_j : M \to M \times \mathbb{R}$ is the inclusion $p \mapsto (p, j)$.
- (iv) Let f and g be smoothly homotopic smooth maps $M \to N$. Show that, for every $k \ge 0$, there exists $S_k \colon \Omega^{k+1}(N) \to \Omega^k(M)$ so that $f^* - g^* = dS_k + S_{k+1}d$.

3. Let *M* and *N* be smooth *m*- and *n*-manifolds, respectively. Suppose that $f: M \to N$ is a continuous map.

- (i) Show that there exists atlases $\{(U_i, \varphi_i) : i \ge 0\}$ of M and $\{(V_j, \psi_j) : j \in J\}$ of N and sets $K_i \subset W_i \subset \overline{W}_i \subset U_i$ for $i \ge 0$ so that for every $i \ge 0$ there exists $j \in J$ so that $fU_i \subset V_j$, and that K_i is compact, W_i open, $\varphi_i U_i = B^m$, and $\psi_j V_j = B^n$ for every $i \ge 0$ and $j \in J$, and that cover $\{U_i\}_{i>0}$ is locally finite, and $\bigcup_i K_i = M$.
- (ii) Show that there exists a sequence of maps $g_k \colon M \to N$ so that $g_k | M \setminus W_k = g_{k-1} | M \setminus W_k$, g_k is homotopic to g_{k-1} rel $M \setminus W_k$,¹ and g_k is smooth in a neighborhood of $\bigcup_{i=0}^k K_i$; we take $g_{-1} = f$.

 $^{{}^{1}}F: X \times [0,1] \to Y$ is a homotopy rel $A \subset X$ if F(x,t) = x for $x \in A$.

(iii) Show that there exists a smooth map $g \colon M \to N$ homotopic to f.

4. An atlas = { $(U_i, \varphi_i): i \in I$ } on a smooth manifold M is *positive* if det $D(\varphi_i \circ \varphi_j^{-1})(x) > 0$ whenever $x \in \varphi_j(U_i \cap U_j)$. Show that the following conditions are equivalent.

- (i) A smooth *n*-manifold *M* has an *n*-form $\omega \in \Omega^k(M)$ so that $\omega_p \neq 0$ for every $p \in M$.
- (ii) A smooth manifold M has a positive atlas.

***5**.

- (i) Calculate $H^k(S^n)$ for all $n \ge 0$ and $k \ge 0$; $S^0 = \{\pm 1\}$.
- (ii) Calculate $H^k(S^2 \times S^1)$ for all $k \ge 0$.

6. Let $\alpha: [0,1] \to \overline{B}^2$ and $\beta: [0,1] \to \overline{B}^2$ be injective paths so that $\alpha(0) = -e_1, \alpha(1) = e_1, \beta(0) = -e_2, \text{ and } \beta(1) = e_2$. Show that $\alpha[0,1] \cap \beta[0,1] \neq \emptyset$.