Introduction to Differential forms Spring 2011 Exercise 10 (for Wednesday Apr. 13)

*1. Fill in the following details to the proof of exactness of the sequence $0 \longrightarrow \Omega^k(U_1 \cup U_2) \longrightarrow \Omega^k(U_1) \oplus \Omega^k(U_2) \xrightarrow{J_k} \Omega^k(U_1 \cap U_2) \longrightarrow 0.$

- (i) Show that $I_{\#} = (I_k)$ and $J_{\#} = (J_k)$ are chain maps.
- (ii) Show that, in the proof of surjectivity of J_k , that $\omega_1 = \varphi_2 \omega \in \Omega^k(U_1)$ and $\omega_2 = -\varphi_1 \omega \in \Omega^k(U_2)$ when $\omega \in \Omega^k(U_1 \cap U_2)$.

2. Find three different ways to calculate $H^k(\mathbb{R}^3 \setminus L)$ for $k \ge 0$, where $L = \{(x, 0, 0) : x \in \mathbb{R}\}.$

3. Let $S = \{(x, y, 0, \dots, 0) \in \mathbb{R}^n : x^2 + y^2 = 1\}$. Calculate $H^k(\mathbb{R}^n \setminus S)$ for every $k \ge 0$.

*4. Let $S = S^1 \times \{0\} \subset \mathbb{R}^3$ and $B^2 = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 < 1\}$. Let $\varphi \colon B^2 \times S^1 \to \mathbb{R}^3$ be an embedding so that $\varphi(S^1) = S$. Let $T = \varphi(B^2 \times S^1)$. Calculate $H^k(T)$ and $H^k(T \setminus S)$ for $k \ge 0$.

5. Given open sets $U \subset V \subset \mathbb{R}^n$ the inclusion $\iota: U \to V$ defines a natural direct homomorphism for compactly supported forms (or push-forward) $\iota_: \Omega_c^k(U) \to \Omega_c^k(V)$ by

$$(\iota_*\omega)_x = \begin{cases} \omega_x, & x \in U\\ 0, & x \notin U. \end{cases}$$

Use push-forwards to show that there exists an exact sequence

$$0 \longrightarrow \Omega_c^k(U_1 \cap U_2) \xrightarrow{I_k} \Omega_c^k(U_1) \oplus \Omega_c^k(U_2) \xrightarrow{J_k} \Omega_c^k(U_1 \cup U_2) \longrightarrow 0$$

where U_1 and U_2 are open maps in \mathbb{R}^n and $I_{\#} = (I_k)$ and $J_{\#} = (J_k)$ are chain maps.

6. Let $U \subset \mathbb{R}^n$ and $V \subset \mathbb{R}^m$ be open sets and $A \subset U$ a closed set. Suppose that $f: U \to V$ a continuous map that is C^{∞} -smooth in a neighborhood W of A, and $\varepsilon: U \to (0, \infty)$ a continuous function. Show that that there exist a C^{∞} -smooth map $g: U \to V$ so that g|A = f|A and $|f(x) - g(x)| < \varepsilon(x)$ for every $x \in U$.