Introduction to Differential forms

Spring 2011

Exercise 8 (for Wednesday Mar 30.)

1. Let U be a starshaped domain in \mathbb{R}^{n} about $x_{0} \in U$ (that is, $t x+(1-t) x_{0} \in$ U for every $x \in U$ and $t \in[0,1])$. Let $\omega \in \Omega^{1}(U)$. Show that

$$
S_{1} \omega(x)=\int_{\gamma^{x}} \omega
$$

where $S_{1}: \Omega^{1}(U) \rightarrow \Omega^{0}(U)$ is the "chain homotopy operator" in the proof of the Poincaré lemma and $\gamma^{x}:[0,1] \rightarrow U$ the path $\gamma^{x}(t)=t\left(x-x_{0}\right)+x_{0}$.
\star 2. Let U and V be open sets in \mathbb{R}^{n} and \mathbb{R}^{m}, respectively, and let f and g be smoothly homotopic C^{∞}-mappings $U \rightarrow V$, that is, there exists a C^{∞} mapping $H: U \times \mathbb{R} \rightarrow V$ so that $H(x, 0)=f(x)$ and $H(x, 1)=g(x)$ for every $x \in U$. Show that $f^{*}=g^{*}: H^{k}(V) \rightarrow H^{k}(U)$ for every $k \geq 0$. (Hint: Modify the proof of Poincaré lemma to obtain a "chain homotopy operator" from $\Omega^{k}(V)$ to $\Omega^{k-1}(U)$.)
\star 3. Let A^{*}, B^{*}, and C^{*} be chain complexes and let $f^{\#}=\left(f_{k}\right): A^{*} \rightarrow B^{*}$ and $g^{\#}=\left(g_{k}\right): B^{*} \rightarrow C^{*}$ be chain maps, and $A^{*} \xrightarrow{f^{\#}} B^{*} \xrightarrow{g^{\#}} C^{*}$ is exact. Show that $f^{*}: H^{k}\left(A^{*}\right) \rightarrow H^{k}\left(B^{*}\right)$ and $g^{*}: H^{k}\left(B^{*}\right) \rightarrow H^{k}\left(C^{*}\right)$ satisfy $\operatorname{Im} f^{*} \subset \operatorname{ker} g^{*}$ for every $k \in \mathbb{Z}$.
$\star 4$. Suppose U and V are disjoint open sets in \mathbb{R}^{n}. Show that, for every k, $H^{k}(U \cup V) \cong H^{k}(U) \oplus H^{k}(V)$.
5.
(i) Let $f: A \rightarrow B$ be a linear map between vector spaces. Show that $A \cong \operatorname{Im} f \oplus \operatorname{ker} f$.
(ii) Suppose that $0 \longrightarrow A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0$ is an exact sequence of vector spaces. Show that B is isomorphic to $A \oplus C$. In particular, that $\operatorname{dim} B=\operatorname{dim} A+\operatorname{dim} C$ if B is finite dimensional.
6^{1}. Let

be a commutative diagaram with exact rows. Show that f_{3} is injective if f_{1} is surjective and f_{2} and f_{4} are injective. Show that f_{3} is surjective if f_{5} is injective and f_{2} and f_{4} are surjective. (If f_{1}, f_{2}, f_{4} and f_{5} are isomorphisms then f_{3} is an isomorphism.)

[^0]
[^0]: ${ }^{1}$ The five lemma

