Introduction to Differential forms Spring 2011 Exercise 8 (for Wednesday Mar 30.)

1. Let U be a starshaped domain in \mathbb{R}^n about $x_0 \in U$ (that is, $tx + (1-t)x_0 \in U$ for every $x \in U$ and $t \in [0, 1]$). Let $\omega \in \Omega^1(U)$. Show that

$$S_1\omega(x) = \int_{\gamma^x} \omega,$$

where $S_1: \Omega^1(U) \to \Omega^0(U)$ is the "chain homotopy operator" in the proof of the Poincaré lemma and $\gamma^x: [0,1] \to U$ the path $\gamma^x(t) = t(x-x_0) + x_0$.

2. Let U and V be open sets in \mathbb{R}^n and \mathbb{R}^m , respectively, and let f and g be smoothly homotopic C^{∞} -mappings $U \to V$, that is, there exists a C^{∞} -mapping $H: U \times \mathbb{R} \to V$ so that H(x,0) = f(x) and H(x,1) = g(x) for every $x \in U$. Show that $f^ = g^* \colon H^k(V) \to H^k(U)$ for every $k \ge 0$. (*Hint*: Modify the proof of Poincaré lemma to obtain a "chain homotopy operator" from $\Omega^k(V)$ to $\Omega^{k-1}(U)$.)

3. Let A^ , B^* , and C^* be chain complexes and let $f^{\#} = (f_k) \colon A^* \to B^*$ and $g^{\#} = (g_k) \colon B^* \to C^*$ be chain maps, and $A^* \xrightarrow{f^{\#}} B^* \xrightarrow{g^{\#}} C^*$ is exact. Show that $f^* \colon H^k(A^*) \to H^k(B^*)$ and $g^* \colon H^k(B^*) \to H^k(C^*)$ satisfy $\operatorname{Im} f^* \subset \ker g^*$ for every $k \in \mathbb{Z}$.

*4. Suppose U and V are disjoint open sets in \mathbb{R}^n . Show that, for every k, $H^k(U \cup V) \cong H^k(U) \oplus H^k(V)$.

5.

- (i) Let $f: A \to B$ be a linear map between vector spaces. Show that $A \cong \operatorname{Im} f \oplus \ker f$.
- (ii) Suppose that $0 \longrightarrow A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0$ is an exact sequence of vector spaces. Show that B is isomorphic to $A \oplus C$. In particular, that dim $B = \dim A + \dim C$ if B is finite dimensional.

$$6^1$$
. Let

$$\begin{array}{cccc} A_1 \longrightarrow A_2 \longrightarrow A_3 \longrightarrow A_4 \longrightarrow A_5 \\ & & \downarrow f_1 & \downarrow f_2 & \downarrow f_3 & \downarrow f_4 & \downarrow f_5 \\ B_1 \longrightarrow B_2 \longrightarrow B_3 \longrightarrow B_4 \longrightarrow B_5 \end{array}$$

be a commutative diagaram with exact rows. Show that f_3 is injective if f_1 is surjective and f_2 and f_4 are injective. Show that f_3 is surjective if f_5 is injective and f_2 and f_4 are surjective. (If f_1, f_2, f_4 and f_5 are isomorphisms then f_3 is an isomorphism.)

¹The five lemma