Introduction to Differential forms Spring 2011 Exercise 7 (for Wednesday Mar 23.)

- *1. Given a k-chain $\sigma = \sum_i a_i \sigma_i$, we denote $|\sigma| = \bigcup_i \sigma_i(\Delta^k)$.
 - (i) Show that there exists a 2-chain σ so that $|\sigma| = S^2$.
 - (ii) Show that σ in (i) can be taken to be a cycle.
- (iii) Show that σ in (ii) can be taken to be a boundary of a 3-chain in \mathbb{R}^3 .

2. Show that there exists a cycle σ as in Ex 1.(ii) and a 2-form ω in $\mathbb{R}^3 \setminus \{0\}$ so that

$$\int_{\sigma} \omega \neq 0.$$

It suffices to find a cycle σ so that the integral is defined. (Checking the C^1 -regularity is not required.)

3. Show that the compactly supported 0-de Rham cohomology of \mathbb{R}^n is trivial, i.e. $H^0_c(\mathbb{R}^n) = 0$, for every $n \ge 1$.

***4**.

- (i) Let U and V be open sets in \mathbb{R}^n and \mathbb{R}^m , respectively, and $f: U \to V$ be a C^{∞} -map. For $k \geq 0$ we define $f^*: H^k(V) \to H^k(U)$ by $f^*[\omega] = [f^*\omega]$. Show that f^* is well-defined. Furthermore, show that $f^* \circ g^* = (g \circ f)^*$ when $g: V \to W$ is a C^{∞} -map and $W \subset \mathbb{R}^{\ell}$ open.
- (ii) Let U be an open set in \mathbb{R}^n . Show that the exterior product $\wedge : H^k(U) \times H^\ell(U) \to H^{k+\ell}(U), \ [\omega] \wedge [\tau] = [\omega \wedge \tau]$, is well-defined.
- **5.** Let $f: U \to V$ be a C^1 -map and σ a C^1 -smooth k-chain in U. Show that

$$\int_{\sigma} f^* \omega = \int_{f_* \sigma} \omega$$

for every continuous k-form ω in V.