Introduction to Differential forms

Spring 2011

Exercise 6 (for Wednesday Mar 2.)

[H] Holopainen, I: "Riemannian geometry", fall 2010.
\star 1. (Section 1.1 in $[\mathrm{H}]$) Using the fact that $\mathbb{S}^{n}=\left\{p \in \mathbb{R}^{n+1}:|p|=1\right\}$ is a manifold, find a smooth structure on \mathbb{S}^{n}. Give an example of a (non-constant) smooth function on \mathbb{S}^{n}.
2. Find a smooth structure on $Q=\partial[0,1]^{3} \subset \mathbb{R}^{3}$. Give an example of a smooth function on Q.
\star 3. (Section 1.21 in $[\mathrm{H}]$) Fill in the details to Theorem 1.22 in $[\mathrm{H}]$. (Hint: The topology is given by: a set $V \subset T M$ is open if and only if $\bar{x}(V \cap T U)$ is open in $\mathbb{R}^{2 n}$ for every chart (U, \bar{x}).)
4. Let N be a smooth submanifold of M. Show that there exists a smooth embedding $I: T N \rightarrow T M$ so that $\pi_{N} \circ I=\iota \circ \pi_{M}$, where $\iota: N \rightarrow M$ is the inclusion; $\pi_{M}: T M \rightarrow M$ and $\pi_{N}: T N \rightarrow N$ are projections as usual.
\star 5. (Section 1.9 in $[\mathrm{H}]$) Given a smooth manifold M. One definition of a tangent space of M at x is given as follows. Let $P_{p}(M)$ be the set of all C^{1} paths $\gamma:(-\delta, \delta) \rightarrow M$ so that $\gamma(0)=p$. Elements of $T_{p} M$ are equivalence classes $[\gamma]$ of paths $\gamma \in P_{p}(M)$ so that $\gamma_{1} \sim \gamma_{2}$ if and only if $\left(\varphi \circ \gamma_{1}\right)^{\prime}(0)=$ $\left(\varphi \circ \gamma_{2}\right)^{\prime}(0)$ for all charts (U, φ). A candidate for the tangent space of M at p is now $P_{p}(M) / \sim$.
(i) Show that the formula $\gamma \mapsto \dot{\gamma}$, where $\dot{\gamma}: C^{\infty}(p) \rightarrow \mathbb{R}$ is the derivation $\dot{\gamma}(u)=(u \circ \gamma)^{\prime}(0)$, defines an isomorphism $P_{p}(M) / \sim \rightarrow T_{p} M$.
(ii) Suppose $M=\mathbb{R}^{n}$ and let $\hat{T} \mathbb{R}^{n}$ be the tangent bundle of \mathbb{R}^{n} as defined in the beginning of the course. Show that the map $\Theta: \hat{T} \mathbb{R}^{n} \rightarrow T \mathbb{R}^{n}$, $(p, v) \mapsto \dot{\gamma}_{v}$, where $\gamma_{v}:(-1,1) \rightarrow \mathbb{R}^{n}$ is the path $\gamma_{v}(t)=p+t v$, defines a bijection that is a linear isomorphisms between tangent spaces $\hat{T}_{p} \mathbb{R}^{n}$ and $T_{p} \mathbb{R}^{n}$ for every $p \in \mathbb{R}^{n}$.
6. Using Problems 4 and 5 , find the image $\Theta^{-1} T \mathbb{S}^{n-1}$ in $\hat{T} \mathbb{R}^{n}$ and give it a geometric interpretation.

