Introduction to Differential forms

Spring 2011
Exercise 5 (for Wednesday Feb 23.)

$\star 1$.

(i) Let ω be a compactly supported C^{1}-smooth $(n-1)$-form in \mathbb{R}^{n}. Show that

$$
\int_{\mathbb{R}^{n}} d \omega=0 .
$$

(ii) Let $\alpha \in C^{1}\left(\Gamma^{k}\left(T \mathbb{R}^{n}\right)\right)$ and $\beta \in C^{1}\left(\Gamma^{\ell}\left(T \mathbb{R}^{n}\right)\right)$ be an k - and ℓ-form in \mathbb{R}^{n}, respectively, where $k, \ell \geq 0$ and $k+\ell=n-1$, so that $\alpha \wedge \beta$ is compactly supported. Show that

$$
\int_{\mathbb{R}^{n}} d \alpha \wedge \beta=-(-1)^{k} \int_{\mathbb{R}^{n}} \alpha \wedge d \beta
$$

\star 2. Let $(P, \xi), P=W+p$, be a k-dimensional oriented affine subspace of $\mathbb{R}^{n}, 0<k<n$, and ω a C^{1}-smooth compactly supported k-form in \mathbb{R}^{n}. Let $v \in \mathbb{R}^{n} \backslash W, W^{\prime}=\operatorname{span}\{W, v\}$, and $Q=W^{\prime}+p$. Orient Q with $\xi^{\prime}=v \wedge \xi$. Show that

$$
\int_{P+v} \omega-\int_{P} \omega=\int_{D} d \omega,
$$

where $D=\{P+t v: t \in[0,1]\} \subset Q$.
\star 3. For every $k \geq 0$ let $\theta_{k}: \bigwedge_{k} \mathbb{R}^{3} \rightarrow \operatorname{Alt}^{k}\left(\mathbb{R}^{n}\right)$ be the standard isomorphism $e_{i_{1}} \wedge \cdots \wedge e_{i_{k}} \mapsto \varepsilon_{i_{1}} \wedge \cdots \wedge \varepsilon_{i_{k}}$.
(i) Let $\star: \operatorname{Alt}^{k}\left(\mathbb{R}^{n}\right) \rightarrow \operatorname{Alt}^{n-k}\left(\mathbb{R}^{n}\right)$ be the Hodge star operator as in Ex. 2 Prob. 4. Define $\star^{\prime}: \bigwedge_{k} \mathbb{R}^{n} \rightarrow \bigwedge_{n-k} \mathbb{R}^{n}$ by $\star^{\prime}=\theta_{n-k}^{-1} \circ \star \circ \theta_{k}$. Show that the cross product $v \times w$ of vectors in \mathbb{R}^{3} satisfies $v \times w=\star^{\prime}(v \wedge w)$ for $v, w \in \mathbb{R}^{3}$.
(ii) Find a formula for the curl-operator ${ }^{1}$ in terms of \star, θ and exterior d.

[^0](iii) Let X be a C^{1}-vector field in an open set U of \mathbb{R}^{n}. Show that
$$
\operatorname{div}(X)=\star d\left(X\left\llcorner d x_{1} \wedge \cdots \wedge d x_{n}\right)\right.
$$
where $X\left\llcorner d x_{1} \wedge \cdots \wedge d x_{n}\right.$ is the $n-1$-form $\left(X\left\llcorner d x_{1} \wedge \cdots \wedge d x_{n}\right)_{p}\left(v_{1}, \ldots, v_{n-1}\right)=\right.$ $d x_{1} \wedge \cdots \wedge d x_{n}\left(X(p), v_{1}, \ldots, v_{n-1}\right)$.
4. ${ }^{2}$ Let $0<k<n$. Show that there exists a C^{∞}-smooth $(n-k)$-form ξ so that
$$
\int_{\mathbb{R}^{k} \times\{0\}} \omega=\int_{\mathbb{R}^{n}} \xi \wedge \omega
$$
for all closed compactly supported C^{1}-smooth k-forms ω in \mathbb{R}^{n}. (Hint: Consider forms in \mathbb{R}^{n-k} and the projection $\mathbb{R}^{k} \times \mathbb{R}^{n-k} \rightarrow \mathbb{R}^{n-k}$.)
5. Let $U \subset \mathbb{R}^{n}$ be an open set and $0 \leq k \leq n$. The operator $d^{*}=$ $(-1)^{n(k+1)-1} \star d \star: C^{1}\left(\Gamma^{k}(U)\right) \rightarrow C^{0}\left(\Gamma^{k-1}(U)\right)$ is called the co-exterior derivative. ${ }^{3}$
(i) Show that $d^{*} \circ d^{*}=0$.
(ii) Show that $-\Delta u=d^{*} d u$ for $u \in C^{2}(U)$, where Δ is the Laplace operator $\Delta u=\sum_{i=1}^{n} \frac{\partial^{2} u}{\partial x_{i} \partial x_{i}}$.
(iii) Define $\Delta=-d^{*} d-d d^{*}: C^{2}\left(\Gamma^{k}(U)\right) \rightarrow C^{0}\left(\Gamma^{k}(U)\right)$ for $k>0$. Show that
$$
\Delta\left(u d x_{i_{1}} \wedge \cdots \wedge d x_{i_{k}}\right)=(\Delta u) d x_{i_{1}} \wedge \cdots \wedge d x_{i_{k}}
$$
where $1 \leq i_{1}<\cdots<i_{k} \leq n$.
6.
(i) Let $Q=[0,1]^{3} \subset \mathbb{R}^{3}$. Show, using the definition, that ∂Q is a manifold.
(ii) Show that
$$
T=\left\{(R+r \cos s)(\cos t, \sin t, 0)+(0,0, r \sin s) \in \mathbb{R}^{3}: s, t \in \mathbb{R}\right\}
$$
is a manifold if $R>r>0$.

[^1]
[^0]: ${ }^{1}$ This operator has many names in vector calculus: rot, $\nabla \times$, etc.

[^1]: ${ }^{2}$ Poincaré dual of \mathbb{R}^{k} in \mathbb{R}^{n-k}.
 ${ }^{3}$ The choice of sign may vary in different texts.

