Introduction to Differential forms Spring 2011 Exercise 5 (for Wednesday Feb 23.)

***1.**

(i) Let ω be a compactly supported C^1 -smooth (n-1)-form in \mathbb{R}^n . Show that

$$\int_{\mathbb{R}^n} d\omega = 0.$$

(ii) Let $\alpha \in C^1(\Gamma^k(T\mathbb{R}^n))$ and $\beta \in C^1(\Gamma^\ell(T\mathbb{R}^n))$ be an k- and ℓ -form in \mathbb{R}^n , respectively, where $k, \ell \geq 0$ and $k + \ell = n - 1$, so that $\alpha \wedge \beta$ is compactly supported. Show that

$$\int_{\mathbb{R}^n} d\alpha \wedge \beta = -(-1)^k \int_{\mathbb{R}^n} \alpha \wedge d\beta.$$

*2. Let (P,ξ) , P = W + p, be a k-dimensional oriented affine subspace of \mathbb{R}^n , 0 < k < n, and ω a C^1 -smooth compactly supported k-form in \mathbb{R}^n . Let $v \in \mathbb{R}^n \setminus W$, $W' = \operatorname{span}\{W, v\}$, and Q = W' + p. Orient Q with $\xi' = v \wedge \xi$. Show that

$$\int_{P+v} \omega - \int_P \omega = \int_D d\omega,$$

where $D = \{P + tv \colon t \in [0, 1]\} \subset Q$.

*3. For every $k \ge 0$ let $\theta_k \colon \bigwedge_k \mathbb{R}^3 \to \operatorname{Alt}^k(\mathbb{R}^n)$ be the standard isomorphism $e_{i_1} \land \cdots \land e_{i_k} \mapsto \varepsilon_{i_1} \land \cdots \land \varepsilon_{i_k}$.

- (i) Let \star : Alt^k(\mathbb{R}^n) \to Alt^{n-k}(\mathbb{R}^n) be the Hodge star operator as in Ex. 2 Prob. 4. Define \star' : $\bigwedge_k \mathbb{R}^n \to \bigwedge_{n-k} \mathbb{R}^n$ by $\star' = \theta_{n-k}^{-1} \circ \star \circ \theta_k$. Show that the cross product $v \times w$ of vectors in \mathbb{R}^3 satisfies $v \times w = \star'(v \wedge w)$ for $v, w \in \mathbb{R}^3$.
- (ii) Find a formula for the curl-operator¹ in terms of \star , θ and exterior d.

¹This operator has many names in vector calculus: rot, $\nabla \times$, etc.

(iii) Let X be a C^1 -vector field in an open set U of \mathbb{R}^n . Show that

$$\operatorname{div}(X) = \star d(X \llcorner dx_1 \land \dots \land dx_n),$$

where $X \sqcup dx_1 \land \cdots \land dx_n$ is the n-1-form $(X \sqcup dx_1 \land \cdots \land dx_n)_p(v_1, \ldots, v_{n-1}) = dx_1 \land \cdots \land dx_n(X(p), v_1, \ldots, v_{n-1}).$

4.² Let 0 < k < n. Show that there exists a C^{∞} -smooth (n - k)-form ξ so that

$$\int_{\mathbb{R}^k \times \{0\}} \omega = \int_{\mathbb{R}^n} \xi \wedge \omega$$

for all closed compactly supported C^1 -smooth k-forms ω in \mathbb{R}^n . (*Hint:* Consider forms in \mathbb{R}^{n-k} and the projection $\mathbb{R}^k \times \mathbb{R}^{n-k} \to \mathbb{R}^{n-k}$.)

5. Let $U \subset \mathbb{R}^n$ be an open set and $0 \leq k \leq n$. The operator $d^* = (-1)^{n(k+1)-1} \star d \star : C^1(\Gamma^k(U)) \to C^0(\Gamma^{k-1}(U))$ is called the *co-exterior deriva*tive.³

- (i) Show that $d^* \circ d^* = 0$.
- (ii) Show that $-\Delta u = d^* du$ for $u \in C^2(U)$, where Δ is the Laplace operator $\Delta u = \sum_{i=1}^n \frac{\partial^2 u}{\partial x_i \partial x_i}$.
- (iii) Define $\Delta = -d^*d dd^* \colon C^2(\Gamma^k(U)) \to C^0(\Gamma^k(U))$ for k > 0. Show that

$$\Delta(udx_{i_1}\wedge\cdots\wedge dx_{i_k})=(\Delta u)dx_{i_1}\wedge\cdots\wedge dx_{i_k}$$

where $1 \leq i_1 < \cdots < i_k \leq n$.

6.

(i) Let $Q = [0, 1]^3 \subset \mathbb{R}^3$. Show, using the definition, that ∂Q is a manifold.

(ii) Show that

$$T = \{ (R + r\cos s)(\cos t, \sin t, 0) + (0, 0, r\sin s) \in \mathbb{R}^3 \colon s, t \in \mathbb{R} \}$$

is a manifold if R > r > 0.

²Poincaré dual of \mathbb{R}^k in \mathbb{R}^{n-k} .

³The choice of sign may vary in different texts.