Introduction to Differential forms

Spring 2011

Exercise 4 (for Wednesday Feb 16.)
$\star 1 .{ }^{1}$ Let V be an n-dimensional vector space and let $\mathcal{B}(V)=\left\{\left(v_{1}, \ldots, v_{n}\right) \in\right.$ $V^{n}:\left(v_{1}, \ldots, v_{n}\right)$ is a basis of $\left.V\right\}$. Given $b \in \mathcal{B}$ and a linear map $f: V \rightarrow V$, let $A[f ; \mathfrak{b}] \in \mathbb{R}^{n \times n}$ the matrix of f in basis \mathfrak{b}.

For $\left(v_{1}, \ldots, v_{n}\right),\left(w_{1}, \ldots, w_{n}\right) \in \mathcal{B}(V)$, we denote $\left(v_{1}, \ldots, v_{n}\right) \sim\left(w_{1}, \ldots, w_{n}\right)$ if the matrix $A\left[f ;\left(v_{1}, \ldots, v_{n}\right)\right]$ of the mapping $f: V \rightarrow V, v_{i} \mapsto w_{i}$, has a positive determinant.
(i) Show that \sim is an equivalence relation in $\mathcal{B}(V)$ and that there are exactly two equivalence classes.
(ii) Let $O(V)$ denote the equivalence classes of orientations as defined in the lecture notes. Show that there exists a well-defined bijection $\Theta_{V}: \mathcal{B}(V) / \sim \rightarrow O(V)$ so that $\Theta_{V}\left[\left(v_{1}, \ldots, v_{n}\right)\right]=\left[v_{1} \wedge \cdots \wedge v_{n}\right]$.
\star 2. Let $X: \mathbb{R}^{n} \backslash\{0\} \rightarrow T \mathbb{R}^{n}$ be the vector field $X(p)=(p, p /|p|)$ and let $\omega \in \Gamma^{n-1}\left(\mathbb{R}^{n} \backslash\{0\}, \operatorname{Alt}^{k}\left(T \mathbb{R}^{n}\right)\right)$ be the $(n-1)$-form $\omega_{p}\left(v_{1}, \ldots, v_{n-1}\right)=d x_{1} \wedge$ $\cdots \wedge d x_{n}\left(X(p), v_{1}, \ldots, v_{n-1}\right)$.
(i) Show that

$$
\omega=\sum_{i=1}^{n}(-1)^{i+1} \frac{x_{i}}{|x|} d x_{1} \wedge \cdots \wedge \widehat{d x_{i}} \wedge \cdots \wedge d x_{n}
$$

where $d x_{1} \wedge \cdots \wedge \widehat{d x_{i}} \wedge \cdots \wedge d x_{n}$ is the $n-1$-form $d x_{1} \wedge \cdots \wedge d x_{i-1} \wedge$ $d x_{i+1} \wedge \cdots \wedge d x_{n}$. Conclude that ω is C^{∞}-smooth in $\mathbb{R}^{n} \backslash\{0\}$.
(ii) Let $B^{n-1}=\left\{p \in \mathbb{R}^{n-1}:|p| \leq 1\right.$ be the unit disk. We set $\sigma_{+}: B^{n-1} \rightarrow$ \mathbb{R}^{n} by $\sigma_{+}(p)=\left(p, \sqrt{1-|p|^{2}}\right)$ and $\sigma_{-}: B^{n-1} \rightarrow \mathbb{R}^{n}$ by $\sigma_{-}(p)=\left(p,-\sqrt{1-|p|^{2}}\right)$. Calculate

$$
\sigma_{+}^{*} \omega \quad \text { and } \quad \sigma_{-}^{*} \omega .
$$

[^0](iii) Calculate
$$
\int_{B^{n-1}} \sigma_{+}^{*}(\omega) \text { and } \int_{B^{n-1}} \sigma_{-}^{*}(\omega) .
$$
when $n=3$. Here $B^{n-1} \subset \mathbb{R}^{n-1}$ is oriented with $e_{1} \wedge \cdots \wedge e_{n-1}$.
\star. Let W be a k-dimensional subspace of n-dimensional inner product space V. Let W^{\perp} be the subspace orthogonal to W, that is, $W^{\perp}=\{w \in$ $V:\left\langle w, w^{\prime}\right\rangle=0$ for all $\left.w \in W\right\}$. Let ξ_{W} be an orientation of W and ξ_{V} an orientation of V. Show that there exists an orientation $\xi_{W^{\perp}}$ of W^{\perp} so that $\xi_{W} \wedge \xi_{W^{\perp}}=\xi_{V}$.
4. Let (P, ξ) be an oriented k-dimensional affine subspace $P=W+p$ of \mathbb{R}^{n} and $\xi=e_{1}^{\prime} \wedge \cdots \wedge e_{k}^{\prime}$, where $\left(e_{1}^{\prime}, \ldots, e_{k}^{\prime}\right)$ is an orthonormal basis of W. Let $\omega \in C^{1}\left(\Gamma^{k}\left(T \mathbb{R}^{n}\right)\right)$. Show that there exists a constant $c \neq 0$, depending only on k and n, so that
$$
\int_{P} \omega=c \int_{P} \underline{\omega}_{x}((x, \xi)) \mathrm{d} \mathcal{H}^{k}(x),
$$
where \mathcal{H}^{k} is the k-dimensional Hausdorff measure in \mathbb{R}^{n}.
5. Let $U \subset \mathbb{R}^{n}$ be an open set and let $f: U \rightarrow \mathbb{R}^{m}$ be a C^{1}-smooth mapping. One is tempted to define a tangent $\operatorname{Tan}_{p}(f)$ for the image of f at $f(p)$ to be the subspace $\operatorname{span}\left\{D f_{p}\left(e_{1}\right), \ldots, D f_{p}\left(e_{n}\right)\right\}$ of $T_{f(p)} \mathbb{R}^{m}$.
(i) (Pros) Show that $\operatorname{dim} \operatorname{Tan}_{p}(f)=n$ if and only if $D f_{p}\left(e_{1}\right) \wedge \cdots \wedge$ $D f_{p}\left(e_{n}\right) \in \bigwedge_{n} T_{f(p)} \mathbb{R}^{m}$ is non-zero.
(ii) (Cons) Give an example of an injective mapping f so that $\operatorname{dim} \operatorname{Tan}_{p}(f)<$ n for some points $p \in U$. (Hint: Look for an easy example when $n=2$ and $m=3$.)
6. Denote $S^{1}=\left\{x \in \mathbb{R}^{2}:|x|=1\right\}$.
(i) Show that ${ }^{2} \pi_{1}\left(S^{1}\right)=\mathbb{Z}$.
(ii) Show that $\pi_{1}(X \times Y)=\pi_{1}(X) \times \pi_{1}(Y)$.
(iii) Find two different ${ }^{3}$ covering spaces ${ }^{4}$ for $S^{1} \times S^{1}$.

[^1]
[^0]: ${ }^{1}$ Another definition for orientation.

[^1]: 2 "Equal" means "isomorphic". $\pi_{1}\left(S^{1}\right)=\mathbb{Z}$ means $\pi_{1}\left(S^{1}, p\right)=\mathbb{Z}$ for every $p \in S^{1}$.
 ${ }^{3}$ i.e. non-homeomorphic
 ${ }^{4}$ A space X is an covering space of Y if there exists a covering map $X \rightarrow Y$

