Introduction to Differential forms Spring 2011 Exercise 3 (for Wednesday Feb 9.)

1. Let W be an m-dimensional vector space and $f: V \to W$ a linear map. Show that the map $f_: \bigwedge_k V \to \bigwedge_k W$,

$$f_*\left(\sum_{I=(i_1,\ldots,i_k)}a_Iv_{i_1}\wedge\cdots\wedge v_{i_k}\right)=\sum_{I=(i_1,\ldots,i_k)}a_If(v_{i_1})\wedge\cdots\wedge f(v_{i_k}),$$

is well-defined and linear. Show also that $f^*\omega(v_1, \ldots, v_k) = \underline{\omega}(f_*(v_1 \wedge \cdots \wedge v_k))$ for $v_1, \ldots, v_k \in V$ and $\omega \in \operatorname{Alt}^k(W)$, where $\underline{\omega} \colon \bigwedge_k W \to \mathbb{R}$ is the linearization of ω .

2. Let V be a finite dimensional vector space and W a subspace. Let $\iota: W \to V$ be the inclusion $\iota(v) = v$. Show that $\iota_ \colon \bigwedge_k W \to \bigwedge_k V$ is injective and $\iota^* \colon \operatorname{Alt}^k(V) \to \operatorname{Alt}^k(W)$ surjective for all k.

3. Suppose $f : \mathbb{R}^4 \to \mathbb{R}^4$ is a linear map so that det f = 1 and $f^* : \operatorname{Alt}^2(\mathbb{R}^4) \to \operatorname{Alt}^2(\mathbb{R}^4)$ is identity. Denote $P_{ij} = \operatorname{span}\{\varepsilon_i, \varepsilon_j\}$ for $i, j \in \{1, \ldots, 4\}$, where $(\varepsilon_1, \ldots, \varepsilon_4)$ is the standard basis of $(\mathbb{R}^4)^*$.

- (i) Show that $f^*P_{ij} = P_{ij}$ for all i, j. (*Hint:* For fixed i and j, write $f^*\varepsilon_i = f_i + g_i$, where $f_i \in P_{ij}, g_i \in P_{km}$, and $\{i, j, k, m\} = \{1, 2, 3, 4\}$. Argue that $g_i = g_j = 0$ using, e.g., that g_i and g_j are linearly dependent.)
- (ii) Show that $f(e_i) = \lambda_i e_i$, where $\lambda_i = \pm 1$, for i = 1, 2, 3, 4. (*Hint:* Look what (i) says about f on 2-dimensional planes span $\{e_i, e_j\}$. Make two such planes intersect. Use geometry!)
- (iii) Find all possible f.
- ***4.** Let V and W be finite dimensional vector spaces.

(i) Show that for every alternating multilinear map¹ $f: V^k \to W$ there exists a unique linear map $\underline{f}: \bigwedge_k V \to W$ so that $\underline{f}(v_1 \land \cdots \land v_k) = f(v_1, \ldots, v_k)$; as a diagram:

(ii) ² Suppose X is a vector space with the following property: there exists an alternating multilinear map $\theta: V^k \to X$ so that for every finite dimensional space W and every alternating multilinear map $f: V^k \to W$ there exists a unique linear map $f: X \to W$ satisfying

Show that X is isomorphic to $\bigwedge_k V$.

5. Let $f: \mathbb{R}^n \to \mathbb{R}^n$ be a linear map. Show that

$$\int_{\mathbb{R}^n} u \circ f|J_f| \, d\mathcal{L}^n = \int_{f(\mathbb{R}^n)} u \, d\mathcal{L}^n$$

where \mathcal{L}^n is the *n*-dimensional Lebesgue measure and J_f the Jacobian determinant det f.

- **6.** (0) Recall from Topology II the definition of a covering map.
 - (i) Let X and Y be topological spaces, $f: X \to Y$ a covering map, and $x_0 \in X$. Let $\sigma: [0,1] \to Y$ be a path so that $\sigma(0) = f(x_0)$. Show that there exists a path $\tilde{\sigma}: [0,1] \to X$ so that $\tilde{\sigma}(0) = x_0$ and $f \circ \tilde{\sigma} = \sigma$.
 - (ii) Let $F: [0,1]^2 \to Y$ be a map so that $F(0,0) = f(x_0)$. Show that there exists a map $\tilde{F}: [0,1]^2 \to X$ so that $\tilde{F}(0,0) = x_0$ and $f \circ \tilde{F} = F$.
- (iii) Show that $f_*: \pi_1(X, x_0) \to \pi_1(Y, f(x_0)), [\gamma] \mapsto [f \circ \gamma]$, is an injection.

¹A map $f: V^k \to W$ is alternating and k-linear if $f(v_1, \ldots, v_k) = 0$ whenever $v_i = v_j$ for $i \neq j$ and $v \mapsto f(v_1, \ldots, v_{i-1}, v, v_{i+1}, \ldots, v_k)$ is linear for every $v_1, \ldots, v_k \in V$.

²The universal property of the exterior product.