Introduction to Differential forms

Spring 2011
Exercise 3 (for Wednesday Feb 9.)
\star 1. Let W be an m-dimensional vector space and $f: V \rightarrow W$ a linear map. Show that the map $f_{*}: \bigwedge_{k} V \rightarrow \bigwedge_{k} W$,

$$
f_{*}\left(\sum_{I=\left(i_{1}, \ldots, i_{k}\right)} a_{I} v_{i_{1}} \wedge \cdots \wedge v_{i_{k}}\right)=\sum_{I=\left(i_{1}, \ldots, i_{k}\right)} a_{I} f\left(v_{i_{1}}\right) \wedge \cdots \wedge f\left(v_{i_{k}}\right)
$$

is well-defined and linear. Show also that $f^{*} \omega\left(v_{1}, \ldots, v_{k}\right)=\underline{\omega}\left(f_{*}\left(v_{1} \wedge \cdots \wedge v_{k}\right)\right)$ for $v_{1}, \ldots, v_{k} \in V$ and $\omega \in \operatorname{Alt}^{k}(W)$, where $\underline{\omega}: \bigwedge_{k} W \rightarrow \mathbb{R}$ is the linearization of ω.
\star 2. Let V be a finite dimensional vector space and W a subspace. Let $\iota: W \rightarrow V$ be the inclusion $\iota(v)=v$. Show that $\iota_{*}: \bigwedge_{k} W \rightarrow \bigwedge_{k} V$ is injective and $\iota^{*}: \operatorname{Alt}^{k}(V) \rightarrow \operatorname{Alt}^{k}(W)$ surjective for all k.
3. Suppose $f: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ is a linear map so that det $f=1$ and $f^{*}: \operatorname{Alt}^{2}\left(\mathbb{R}^{4}\right) \rightarrow$ $\operatorname{Alt}^{2}\left(\mathbb{R}^{4}\right)$ is identity. Denote $P_{i j}=\operatorname{span}\left\{\varepsilon_{i}, \varepsilon_{j}\right\}$ for $i, j \in\{1, \ldots, 4\}$, where $\left(\varepsilon_{1}, \ldots, \varepsilon_{4}\right)$ is the standard basis of $\left(\mathbb{R}^{4}\right)^{*}$.
(i) Show that $f^{*} P_{i j}=P_{i j}$ for all i, j. (Hint: For fixed i and j, write $f^{*} \varepsilon_{i}=$ $f_{i}+g_{i}$, where $f_{i} \in P_{i j}, g_{i} \in P_{k m}$, and $\{i, j, k, m\}=\{1,2,3,4\}$. Argue that $g_{i}=g_{j}=0$ using, e.g., that g_{i} and g_{j} are linearly dependent.)
(ii) Show that $f\left(e_{i}\right)=\lambda_{i} e_{i}$, where $\lambda_{i}= \pm 1$, for $i=1,2,3,4$. (Hint: Look what (i) says about f on 2-dimensional planes $\operatorname{span}\left\{e_{i}, e_{j}\right\}$. Make two such planes intersect. Use geometry!)
(iii) Find all possible f.
$\star 4$. Let V and W be finite dimensional vector spaces.
(i) Show that for every alternating multilinear map ${ }^{1} f: V^{k} \rightarrow W$ there exists a unique linear map $\underline{f}: \bigwedge_{k} V \rightarrow W$ so that $\underline{f}\left(v_{1} \wedge \cdots \wedge v_{k}\right)=$ $f\left(v_{1}, \ldots, v_{k}\right)$; as a diagram:

(ii) ${ }^{2}$ Suppose X is a vector space with the following property: there exists an alternating multilinear map $\theta: V^{k} \rightarrow X$ so that for every finite dimensional space W and every alternating multilinear map $f: V^{k} \rightarrow$ W there exists a unique linear map $\underline{f}: X \rightarrow W$ satisfying

Show that X is isomorphic to $\bigwedge_{k} V$.
5. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear map. Show that

$$
\int_{\mathbb{R}^{n}} u \circ f\left|J_{f}\right| d \mathcal{L}^{n}=\int_{f\left(\mathbb{R}^{n}\right)} u d \mathcal{L}^{n}
$$

where \mathcal{L}^{n} is the n-dimensional Lebesgue measure and J_{f} the Jacobian determinant $\operatorname{det} f$.
6. (0) Recall from Topology II the definition of a covering map.
(i) Let X and Y be topological spaces, $f: X \rightarrow Y$ a covering map, and $x_{0} \in X$. Let $\sigma:[0,1] \rightarrow Y$ be a path so that $\sigma(0)=f\left(x_{0}\right)$. Show that there exists a path $\tilde{\sigma}:[0,1] \rightarrow X$ so that $\tilde{\sigma}(0)=x_{0}$ and $f \circ \tilde{\sigma}=\sigma$.
(ii) Let $F:[0,1]^{2} \underset{\sim}{\sim} Y$ be a map so that $\underset{\tilde{F}}{F}(0,0)=f\left(x_{0}\right)$. Show that there exists a map $\tilde{F}:[0,1]^{2} \rightarrow X$ so that $\tilde{F}(0,0)=x_{0}$ and $f \circ \tilde{F}=F$.
(iii) Show that $f_{*}: \pi_{1}\left(X, x_{0}\right) \rightarrow \pi_{1}\left(Y, f\left(x_{0}\right)\right),[\gamma] \mapsto[f \circ \gamma]$, is an injection.

[^0]
[^0]: ${ }^{1} \mathrm{~A} \operatorname{map} f: V^{k} \rightarrow W$ is alternating and k-linear if $f\left(v_{1}, \ldots, v_{k}\right)=0$ whenever $v_{i}=v_{j}$ for $i \neq j$ and $v \mapsto f\left(v_{1}, \ldots, v_{i-1}, v, v_{i+1}, \ldots, v_{k}\right)$ is linear for every $v_{1}, \ldots, v_{k} \in V$.
 ${ }^{2}$ The universal property of the exterior product.

