Introduction to Differential forms

Spring 2011
Exercise 2 (for Wednesday Feb 2.)
Problems marked with \star are to be handed at the beginning of the exercise session; problems not marked with \star are discussed in the exercise session.
\star 1. Let V be an n-dimensional vector space.
(i) Let $A=\left(a_{i j}\right)$ be an $n \times n$-matrix. For every pair $(i, j) \in\{1, \ldots, n\}$ denote by $A_{i j}$ the $(n-1) \times(n-1)$-matrix obtained from A by removing i th row and j th column. Show that the recursive formula

$$
\operatorname{det} A=\sum_{k=1}^{n}(-1)^{1+k} a_{1 k} \operatorname{det} A_{1 k}
$$

for the determinant is the same as the formula

$$
\operatorname{det} A=\sum_{\sigma \in S_{n}} \operatorname{sign}(\sigma) a_{1 \sigma(1)} \cdots a_{n \sigma(n)},
$$

where S_{n} is the group of permutations of $\{1, \ldots, n\}$.
(ii) Let V be a finite dimensional vectorspace and let e_{1}, \ldots, e_{n} be a basis of V and $\varepsilon_{1}, \ldots, \varepsilon_{n}$ the corresponding dual basis ${ }^{1}$. Show that

$$
\varepsilon_{1} \wedge \cdots \wedge \varepsilon_{n}\left(v_{1}, \ldots, v_{n}\right)=\operatorname{det}\left(v_{i j}\right)
$$

for $v_{1}, \ldots, v_{n} \in V$, where $\left(v_{i j}\right)$ is the matrix so that $v_{i}=\sum_{j=1}^{n} v_{i j} e_{j}$.
(iii) Prove the Geometric Structure Theorem (see lecture notes).
\star 2. Let $V,\left(e_{1}, \ldots, e_{n}\right)$, and $\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)$ be as in Problem 1 .
(i) Let $\omega \in \operatorname{Alt}^{k}(V)$. Show that $\omega\left(v_{1}, \ldots, v_{k}\right)=0$ if vectors $v_{1}, \ldots, v_{k} \in V$ are linearly dependent. Conclude that $\operatorname{Alt}^{k}(V)=\{0\}$ for $k>\operatorname{dim} V$.
(ii) Let $\omega \in \operatorname{Alt}^{k}(V)$ and $\tau \in \operatorname{Alt}^{\ell}(V)$. Show that $\omega \wedge \tau=(-1)^{k \ell} \tau \wedge \omega$.

[^0]3. Let $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear map so that $\operatorname{det} L=1$ and $L^{*}: \operatorname{Alt}^{2}\left(\mathbb{R}^{n}\right) \rightarrow$ $\operatorname{Alt}^{2}\left(\mathbb{R}^{n}\right)$ is the identity. What can we say about L when (i) $n=2$, (ii) $n=3$, (iii) $n=4$?
$\star 4$. Let V be a finite dimensional vector space with an inner product $\langle\cdot, \cdot\rangle$. Let $\left(e_{1}, \ldots, e_{n}\right)$ be an orthonormal basis. Let $\Phi: V \rightarrow V^{*}$ be the isomorphism satisfying $\Phi\left(e_{i}\right)=\varepsilon_{i}$, where $\varepsilon_{i} \in V^{*}$ is the map defined by $\varepsilon_{i}(v)=\left\langle v, e_{i}\right\rangle$ $(v \in V)$. Denote also $\varepsilon_{I}=\varepsilon_{i_{1}} \wedge \cdots \wedge \varepsilon_{i_{k}}$ for all $I=\left(i_{1}, \ldots, i_{k}\right)$, where $1 \leq i_{1}<\cdots<i_{k} \leq n$.
(i) For every $k \geq 0$ we define an inner product $\langle\cdot, \cdot\rangle$ on $\operatorname{Alt}^{k}(V)$ by $\left\langle\varepsilon_{I}, \varepsilon_{J}\right\rangle=$ 0 for $I \neq J$ and $\left\langle\varepsilon_{I}, \varepsilon_{I}\right\rangle=1$ for every $I=\left(i_{1}, \ldots, i_{k}\right)$. Show that
$$
\left\langle\Phi\left(v_{1}\right) \wedge \cdots \wedge \Phi\left(v_{k}\right), \Phi\left(w_{1}\right) \wedge \cdots \wedge \Phi\left(w_{k}\right)\right\rangle=\operatorname{det}\left(\left\langle v_{i}, w_{j}\right\rangle\right) .
$$
for all $v_{1}, \ldots, v_{k}, w_{1}, \ldots, w_{k} \in V$.
(ii) Show that, for $0 \leq k \leq n$, there exists a (unique) linear map ${ }^{2} \star$: $\operatorname{Alt}^{k}(V) \rightarrow$ $\mathrm{Alt}^{n-k}(V)$ so that
$$
\omega \wedge \star \eta=\langle\omega, \eta\rangle \varepsilon_{1} \wedge \cdots \wedge \varepsilon_{n}
$$
for $\omega, \eta \in \operatorname{Alt}^{k}(V)$. (Hint: Find first $\star \varepsilon_{I}$ for all $I=\left(i_{1}, \ldots, i_{k}\right)$.)
5. Let V and $\star: \operatorname{Alt}^{k}(V) \rightarrow \operatorname{Alt}^{n-k}(V)$ be as in Problem 4.
(i) Show that $\star \circ \star=(-1)^{k(n-k)}$ id: $\mathrm{Alt}^{k}(V) \rightarrow \mathrm{Alt}^{k}(V)$.
(ii) Suppose $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is an orthogonal linear map with determinant 1. Show that $A^{*} \circ \star=\star \circ A^{*}: \operatorname{Alt}^{k}\left(\mathbb{R}^{n}\right) \rightarrow \operatorname{Alt}^{k}\left(\mathbb{R}^{n}\right)$ for $0 \leq k \leq n$.
6.
(0) Recall from Topology II the definition of the fundamental group.
(i) Let B be a Euclidean ball $B^{n}(x, r)$ in \mathbb{R}^{n} and suppose that $\gamma:[0,1] \rightarrow B$ is a path. Show that γ is homotopic in B to a path $\hat{\gamma}:[0,1] \rightarrow B$, $t \mapsto(1-t) \gamma(0)+t \gamma(1)$, relative ${ }^{3}$ to $\{0,1\}$.
(ii) Show that $\pi_{1}\left(\mathbb{R}^{3} \backslash\{0\}, x_{0}\right)$ is trivial for every $x_{0} \in \mathbb{R}^{3} \backslash\{0\}$. (Note: $\mathbb{R}^{3} \backslash\{0\}$ is not contractible!)

[^1]
[^0]: ${ }^{1} \varepsilon_{i}\left(e_{j}\right)=0$ for $i \neq j$ and $\varepsilon_{i}\left(e_{i}\right)=1$ for all i

[^1]: ${ }^{2}$ the "Hodge star"-operator
 ${ }^{3}$ A homotopy $F: Y \times[0,1] \rightarrow Z$ is relative to $A \subset Y$ if $F(x, t)=F(x, 0)$ for all $x \in A$ and all $t \in[0,1]$.

