Introduction to Differential forms Spring 2011 Exercise 2 (for Wednesday Feb 2.)

Problems marked with \star are to be handed at the beginning of the exercise session; problems not marked with \star are discussed in the exercise session.

- **\star 1.** Let V be an *n*-dimensional vector space.
 - (i) Let $A = (a_{ij})$ be an $n \times n$ -matrix. For every pair $(i, j) \in \{1, \ldots, n\}$ denote by A_{ij} the $(n-1) \times (n-1)$ -matrix obtained from A by removing *i*th row and *j*th column. Show that the recursive formula

$$\det A = \sum_{k=1}^{n} (-1)^{1+k} a_{1k} \det A_{1k},$$

for the determinant is the same as the formula

$$\det A = \sum_{\sigma \in S_n} \operatorname{sign}(\sigma) a_{1\sigma(1)} \cdots a_{n\sigma(n)},$$

where S_n is the group of permutations of $\{1, \ldots, n\}$.

(ii) Let V be a finite dimensional vectorspace and let e_1, \ldots, e_n be a basis of V and $\varepsilon_1, \ldots, \varepsilon_n$ the corresponding dual basis¹. Show that

$$\varepsilon_1 \wedge \cdots \wedge \varepsilon_n(v_1, \dots, v_n) = \det(v_{ij})$$

for $v_1, \ldots, v_n \in V$, where (v_{ij}) is the matrix so that $v_i = \sum_{j=1}^n v_{ij} e_j$.

- (iii) Prove the Geometric Structure Theorem (see lecture notes).
- *2. Let $V, (e_1, \ldots, e_n)$, and $(\varepsilon_1, \ldots, \varepsilon_n)$ be as in Problem 1.
 - (i) Let $\omega \in \operatorname{Alt}^k(V)$. Show that $\omega(v_1, \ldots, v_k) = 0$ if vectors $v_1, \ldots, v_k \in V$ are linearly dependent. Conclude that $\operatorname{Alt}^k(V) = \{0\}$ for $k > \dim V$.
 - (ii) Let $\omega \in \operatorname{Alt}^k(V)$ and $\tau \in \operatorname{Alt}^\ell(V)$. Show that $\omega \wedge \tau = (-1)^{k\ell} \tau \wedge \omega$.

 $[\]overline{\varepsilon_i(e_j)} = 0$ for $i \neq j$ and $\varepsilon_i(e_i) = 1$ for all i

3. Let $L: \mathbb{R}^n \to \mathbb{R}^n$ be a linear map so that det L = 1 and $L^*: \operatorname{Alt}^2(\mathbb{R}^n) \to \operatorname{Alt}^2(\mathbb{R}^n)$ is the identity. What can we say about L when (i) n = 2, (ii) n = 3, (iii) n = 4?

4. Let V be a finite dimensional vector space with an inner product $\langle \cdot, \cdot \rangle$. Let (e_1, \ldots, e_n) be an orthonormal basis. Let $\Phi: V \to V^$ be the isomorphism satisfying $\Phi(e_i) = \varepsilon_i$, where $\varepsilon_i \in V^*$ is the map defined by $\varepsilon_i(v) = \langle v, e_i \rangle$ $(v \in V)$. Denote also $\varepsilon_I = \varepsilon_{i_1} \land \cdots \land \varepsilon_{i_k}$ for all $I = (i_1, \ldots, i_k)$, where $1 \leq i_1 < \cdots < i_k \leq n$.

(i) For every $k \ge 0$ we define an inner product $\langle \cdot, \cdot \rangle$ on $\operatorname{Alt}^k(V)$ by $\langle \varepsilon_I, \varepsilon_J \rangle = 0$ for $I \ne J$ and $\langle \varepsilon_I, \varepsilon_I \rangle = 1$ for every $I = (i_1, \ldots, i_k)$. Show that

$$\langle \Phi(v_1) \wedge \cdots \wedge \Phi(v_k), \Phi(w_1) \wedge \cdots \wedge \Phi(w_k) \rangle = \det (\langle v_i, w_j \rangle).$$

for all $v_1, \ldots, v_k, w_1, \ldots, w_k \in V$.

(ii) Show that, for $0 \le k \le n$, there exists a (unique) linear map² \star : Alt^k(V) \rightarrow Alt^{n-k}(V) so that

$$\omega \wedge \star \eta = \langle \omega, \eta \rangle \varepsilon_1 \wedge \cdots \wedge \varepsilon_n$$

for $\omega, \eta \in \text{Alt}^k(V)$. (*Hint:* Find first $\star \varepsilon_I$ for all $I = (i_1, \ldots, i_k)$.)

- **5.** Let V and \star : Alt^k(V) \rightarrow Alt^{n-k}(V) be as in Problem 4.
 - (i) Show that $\star \circ \star = (-1)^{k(n-k)}$ id: Alt^k(V) \to Alt^k(V).
 - (ii) Suppose $A: \mathbb{R}^n \to \mathbb{R}^n$ is an orthogonal linear map with determinant 1. Show that $A^* \circ \star = \star \circ A^*$: Alt^k(\mathbb{R}^n) \to Alt^k(\mathbb{R}^n) for $0 \le k \le n$.

- (0) Recall from Topology II the definition of the fundamental group.
- (i) Let B be a Euclidean ball $B^n(x, r)$ in \mathbb{R}^n and suppose that $\gamma \colon [0, 1] \to B$ is a path. Show that γ is homotopic in B to a path $\hat{\gamma} \colon [0, 1] \to B$, $t \mapsto (1-t)\gamma(0) + t\gamma(1)$, relative³ to $\{0, 1\}$.
- (ii) Show that $\pi_1(\mathbb{R}^3 \setminus \{0\}, x_0)$ is trivial for every $x_0 \in \mathbb{R}^3 \setminus \{0\}$. (*Note:* $\mathbb{R}^3 \setminus \{0\}$ is not contractible!)

^{6.}

²the "Hodge star"-operator

³A homotopy $F: Y \times [0,1] \to Z$ is relative to $A \subset Y$ if F(x,t) = F(x,0) for all $x \in A$ and all $t \in [0,1]$.