Introduction to Differential forms Spring 2011 Exercise 1 (due Wednesday Jan 26.)

Solutions to problems marked with \star are to be handed in at the beginning of the exercise session; problems not marked with \star are discussed in the exercise session.

*1. Let $\Omega \subset \mathbb{R}^n$ be an open set and let X and Y be continuous vector fields in Ω . Show that there exists a C^1 -function f on Ω so that $X = Y + \nabla f$ if and only if

$$\int_0^1 \langle X(\gamma(t)), \dot{\gamma}(t) \rangle \, \mathrm{d}t = \int_0^1 \langle Y(\gamma(t)), \dot{\gamma}(t) \rangle \, \mathrm{d}t$$

for every C^1 -loop¹ $\gamma \colon [0,1] \to \Omega, \, \gamma(0) = \gamma(1).$

2. Find a C^1 -smooth 1-form $\omega \colon \mathbb{R}^2 \setminus \{0\} \to T^*\mathbb{R}^2$ so that $I \colon (0,\infty) \to \mathbb{R}$,

$$r\mapsto \int_{\gamma_r}\omega,$$

is a constant function not equal to zero, where $\gamma_r \colon [0,1] \to \mathbb{R}^2 \setminus \{0\}$ is the path $\gamma_r(t) = (r \cos(2\pi t), r \sin(2\pi t)).$

*3. Given $x_0 \in \mathbb{R}^n$ define $P(x_0)$ be the set of C^1 -paths $\gamma: (-1,1) \to \mathbb{R}^n$ so that $\gamma(0) = x_0$ and define paths $\alpha + \beta \in P(x_0)$ and $a\alpha \in P(x_0)$ by $(\alpha + \beta)(t) = \alpha(t) + \beta(t) - x_0$ and $(a\alpha)(t) = a(\alpha(t) - x_0) + x_0$ for $t \in (-1, 1)$. Define an equivalence relation \sim on $P(x_0)$ by $\alpha \sim \beta$ iff $\alpha'(0) = \beta'(0)$ and set $\tilde{T}_{x_0}\mathbb{R}^n = P(x_0)/\sim$. Set also $\tilde{T}E = \bigcup_{x \in E} \tilde{T}_x \mathbb{R}^n$ for any set $E \subset \mathbb{R}^n$.

- (i) Show that $T_{x_0}\mathbb{R}^n$ is a vector space with addition $[\alpha] + [\beta] = [\alpha + \beta]$ and scalar multiplication $a[\alpha] = [a\alpha]$.
- (ii) Let $\varphi \colon \Omega \to \mathbb{R}^n$ be a C^1 -map, where $\Omega \subset \mathbb{R}^m$ is an open set, and let $x_0 \in \Omega$. Show that the map $(\varphi_*)_{x_0} \colon \tilde{T}_{x_0}\Omega \to \tilde{T}_{\varphi(x_0)}\mathbb{R}^n$, $[\gamma] \to [\varphi \circ \gamma]$, is well-defined.
- (iii) Show that, for every $x_0 \in \mathbb{R}^n$, there exists an isomorphism $\Phi_{x_0} \colon T_{x_0} \mathbb{R}^n \to \tilde{T}_{x_0} \mathbb{R}^n$ so that $\Phi_{x_1}(D\tau(v)) = \tau_*(\Phi_{x_0}(v))$ whenever $\tau \colon \mathbb{R}^n \to \mathbb{R}^n$ is a translation $x \mapsto x + (x_1 x_0)$.

¹A loop is a path with coinciding start and end point.

- (iv) Suppose $f: \Omega \to \mathbb{R}$ is a C^1 -function. Show that $(df)_{x_0}(v) = (f \circ \gamma)'(0)$, where $\Phi(v) = [\gamma] \in \tilde{T}_{x_0} \mathbb{R}^n$ and $x_0 \in \Omega$.
- (v) Let V be an affine subspace of \mathbb{R}^n and $x_0 \in V$. Define $\tilde{T}_{x_0}V = \{[\gamma] \in T_{x_0}\mathbb{R}^n : \gamma(-1,1) \subset V\}$. Show that $\tilde{T}_{x_0}V$ is well-defined and that $\Phi(T_{x_0}V) = \tilde{T}_{x_0}V$.

4. Let $A: \mathbb{R}^n \to \mathbb{R}^n$ be a linear map. Show that $m_n(A(E)) = (\det A)m_n(E)$ for all measurable sets $E \subset \mathbb{R}^n$. *Hint:* Elementary matrices and, for example, Rudin: Real and complex analysis.

- ***5.** Let V be an n-dimensional vector space and (e_1, \ldots, e_n) a basis of V.
 - (i) Show that the dual space $V^* = \{f \colon V \to \mathbb{R} \colon f \text{ linear}\}$ has a basis $\{\varepsilon_1, \ldots, \varepsilon_n\}$ so that $f = \sum_{i=1}^n a_i \varepsilon_i$, where $a_i = f(e_i)$, for every $f \in V^*$.
 - (ii) Let W be an m-dimensional vector space with basis (e'_1, \ldots, e'_m) . Find a basis for the space L(V, W) of all linear maps $V \to W$.

6. A topological space X is contractible if there exists a homotopy² $F: X \times [0,1] \to X$ from id_X to a constant map. Show that $\mathbb{R}^3 \setminus R$, where $R = \{(x,0,0): x \ge 0\} = [0,\infty) \times \{(0,0)\}$, is contractible.

²A map $F: X \times [0,1] \to Y$ is a homotopy from $f_0: X \to Y$ to $f_1: X \to Y$ if F is continuous and $F(x,0) = f_0(x)$ and $F(x,1) = f_1(x)$ for all $x \in X$.