## Introduction to Differential forms

## Spring 2011

## Exercise 1 (due Wednesday Jan 26.)

Solutions to problems marked with $\star$ are to be handed in at the beginning of the exercise session; problems not marked with $\star$ are discussed in the exercise session.
$\star \mathbf{1}$. Let $\Omega \subset \mathbb{R}^{n}$ be an open set and let $X$ and $Y$ be continuous vector fields in $\Omega$. Show that there exists a $C^{1}$-function $f$ on $\Omega$ so that $X=Y+\nabla f$ if and only if

$$
\int_{0}^{1}\langle X(\gamma(t)), \dot{\gamma}(t)\rangle \mathrm{d} t=\int_{0}^{1}\langle Y(\gamma(t)), \dot{\gamma}(t)\rangle \mathrm{d} t
$$

for every $C^{1}$-loop $^{1} \gamma:[0,1] \rightarrow \Omega, \gamma(0)=\gamma(1)$.
2. Find a $C^{1}$-smooth 1-form $\omega: \mathbb{R}^{2} \backslash\{0\} \rightarrow T^{*} \mathbb{R}^{2}$ so that $I:(0, \infty) \rightarrow \mathbb{R}$,

$$
r \mapsto \int_{\gamma_{r}} \omega,
$$

is a constant function not equal to zero, where $\gamma_{r}:[0,1] \rightarrow \mathbb{R}^{2} \backslash\{0\}$ is the path $\gamma_{r}(t)=(r \cos (2 \pi t), r \sin (2 \pi t))$.
$\star$ 3. Given $x_{0} \in \mathbb{R}^{n}$ define $P\left(x_{0}\right)$ be the set of $C^{1}$-paths $\gamma:(-1,1) \rightarrow \mathbb{R}^{n}$ so that $\gamma(0)=x_{0}$ and define paths $\alpha+\beta \in P\left(x_{0}\right)$ and $a \alpha \in P\left(x_{0}\right)$ by $(\alpha+\beta)(t)=\alpha(t)+\beta(t)-x_{0}$ and $(a \alpha)(t)=a\left(\alpha(t)-x_{0}\right)+x_{0}$ for $t \in(-1,1)$. Define an equivalence relation $\sim$ on $P\left(x_{0}\right)$ by $\alpha \sim \beta$ iff $\alpha^{\prime}(0)=\beta^{\prime}(0)$ and set $\tilde{T}_{x_{0}} \mathbb{R}^{n}=P\left(x_{0}\right) / \sim$. Set also $\tilde{T} E=\bigcup_{x \in E} \tilde{T}_{x} \mathbb{R}^{n}$ for any set $E \subset \mathbb{R}^{n}$.
(i) Show that $\tilde{T}_{x_{0}} \mathbb{R}^{n}$ is a vector space with addition $[\alpha]+[\beta]=[\alpha+\beta]$ and scalar multiplication $a[\alpha]=[a \alpha]$.
(ii) Let $\varphi: \Omega \rightarrow \mathbb{R}^{n}$ be a $C^{1}$-map, where $\Omega \subset \mathbb{R}^{m}$ is an open set, and let $x_{0} \in \Omega$. Show that the map $\left(\varphi_{*}\right)_{x_{0}}: \tilde{T}_{x_{0}} \Omega \rightarrow \tilde{T}_{\varphi\left(x_{0}\right)} \mathbb{R}^{n},[\gamma] \rightarrow[\varphi \circ \gamma]$, is well-defined.
(iii) Show that, for every $x_{0} \in \mathbb{R}^{n}$, there exists an isomorphism $\Phi_{x_{0}}: T_{x_{0}} \mathbb{R}^{n} \rightarrow$ $\tilde{T}_{x_{0}} \mathbb{R}^{n}$ so that $\Phi_{x_{1}}(D \tau(v))=\tau_{*}\left(\Phi_{x_{0}}(v)\right)$ whenever $\tau: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a translation $x \mapsto x+\left(x_{1}-x_{0}\right)$.

[^0](iv) Suppose $f: \Omega \rightarrow \mathbb{R}$ is a $C^{1}$-function. Show that $(d f)_{x_{0}}(v)=(f \circ \gamma)^{\prime}(0)$, where $\Phi(v)=[\gamma] \in \tilde{T}_{x_{0}} \mathbb{R}^{n}$ and $x_{0} \in \Omega$.
(v) Let $V$ be an affine subspace of $\mathbb{R}^{n}$ and $x_{0} \in V$. Define $\tilde{T}_{x_{0}} V=$ $\left\{[\gamma] \in T_{x_{0}} \mathbb{R}^{n}: \gamma(-1,1) \subset V\right\}$. Show that $\tilde{T}_{x_{0}} V$ is well-defined and that $\Phi\left(T_{x_{0}} V\right)=\tilde{T}_{x_{0}} V$.
4. Let $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear map. Show that $m_{n}(A(E))=(\operatorname{det} A) m_{n}(E)$ for all measurable sets $E \subset \mathbb{R}^{n}$. Hint: Elementary matrices and, for example, Rudin: Real and complex analysis.
$\star 5$. Let $V$ be an $n$-dimensional vector space and $\left(e_{1}, \ldots, e_{n}\right)$ a basis of $V$.
(i) Show that the dual space $V^{*}=\{f: V \rightarrow \mathbb{R}: f$ linear $\}$ has a basis $\left\{\varepsilon_{1}, \ldots, \varepsilon_{n}\right\}$ so that $f=\sum_{i=1}^{n} a_{i} \varepsilon_{i}$, where $a_{i}=f\left(e_{i}\right)$, for every $f \in V^{*}$.
(ii) Let $W$ be an $m$-dimensional vector space with basis $\left(e_{1}^{\prime}, \ldots, e_{m}^{\prime}\right)$. Find a basis for the space $L(V, W)$ of all linear maps $V \rightarrow W$.
6. A topological space $X$ is contractible if there exists a homotopy ${ }^{2} F: X \times$ $[0,1] \rightarrow X$ from $\operatorname{id}_{X}$ to a constant map. Show that $\mathbb{R}^{3} \backslash R$, where $R=$ $\{(x, 0,0): x \geq 0\}=[0, \infty) \times\{(0,0)\}$, is contractible.

[^1]
[^0]:    ${ }^{1}$ A loop is a path with coinciding start and end point.

[^1]:    ${ }^{2}$ A map $F: X \times[0,1] \rightarrow Y$ is a homotopy from $f_{0}: X \rightarrow Y$ to $f_{1}: X \rightarrow Y$ if $F$ is continuous and $F(x, 0)=f_{0}(x)$ and $F(x, 1)=f_{1}(x)$ for all $x \in X$.

