
STOCHASTIC PARTICLE SYSTEMS: EXERCISE 5 - SOLUTIONS

1. During the lectures, we showed that given a strongly continuous contraction semigroup S(t)
on a Banach space B and the semigroup’s generator L, then Bλ defined on B

Bλf =

∫ ∞
0

e−λtS(t)fdt

is the right inverse of the operator λ−L, i.e., that (λ−L)Bλf = f for all f ∈ B. Show that it is
also the left inverse (so in fact Bλ = (λ− L)−1).

Solution: Let f ∈ D(L). We must show that∫ ∞
0

e−λtS(t)(λ− L)fdt = f.

To do this in detail, we need some results from Seppäläinen’s notes. First of all, if the function
u : [a, b]→ B is continuous, the integral (which we understand as a strong limit of Riemann sums)∫ b

a

u(t)dt

exists (that is continuous functions are Riemann integrable). We also need that if K : D(K)→ B,
whereD(K) ⊂ B, is a closed linear operator, u : [a, b]→ D(K) is continuous andKu is continuous,
then

∫ b
a
u(t)dt ∈ D(K) and

K

∫ b

a

u(t)dt =

∫ b

a

Ku(t)dt.

The proof of these is given in Lemma 3.4 of Seppäläinen’s notes. We are interested in the case
where u(t) = S(t)f and K = L. Using completeness and the fact that S(t) is a contraction,
one can make sense of

∫∞
0
e−λtS(t)fdt and also extend the results above to the case of an infinite

interval.

Using these results and the fact that S(t)L = LS(t), we have

Bλ(λ− L)f =

∫ ∞
0

e−λtS(t)(λ− L)fdt

= λBλf −
∫ ∞

0

Le−λtS(t)fdt

= λBλf − L
∫ ∞

0

e−λtS(t)fdt

= (λ− L)Bλf

= f.

In the last step we used the result we proved in the lectures.
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2. Consider the Banach space C(X), where X is a compact metric space with its measurable
structure given by the Borel sets.

a) Suppose L is a Markov pregenerator with domain D(L) ⊂ C(X). Show that L has a closure
L̄ and this is a Markov pregenerator as well.

b) Suppose that L is a closed Markov pregenerator with domain D(L) ⊂ C(X). Show that for
λ > 0, the range of λ− L is a closed subset of C(X).

Solution: a) Recall that a closed linear operator on C(X) is one who’s graph {(f, Lf) : f ∈
D(L)} is a closed subset of C(X) × C(X). The closure of L is the smallest closed extension of
L (smallest meaning that the domain is the smallest with respect to inclusion of sets). Pick now
fn ∈ D(L) so that fn → 0 and Lfn → h for some h ∈ C(X). Moreover, let g ∈ D(L) be arbitrary.
Recalling that we proved in the lectures that for f ∈ D(L), one has ||(λ−L)f || ≥ λ||f || for λ ≥ 0,
we see that for λ ≥ 0

||(λ− L)(λfn + g)|| ≥ λ||λfn + g||.

Taking n→∞, we have

||λg − λh− Lg|| ≥ λ||g||.

Dividing by λ and taking λ→∞, we see that

||g − h|| ≥ ||g||.

This must hold for any g ∈ D(L). Recall that D(L) is dense in C(X) by the definition of a
Markov pregenerator so in fact ||v − h|| ≥ ||v|| for any v ∈ C(X). Choosing v = h shows that
h = 0. This implies that if f ∈ C(X) so that for some fn ∈ D(L) fn → f and Lfn converges, then
L̄f = limn Lfn is well defined (i.e. independent of the sequence fn we chose). Also the graph of L̄
is then {(f, Lf)|f ∈ D(L)} so L̄ is closed and its domain is minimal, i.e., it is the closure of L.

To check that it is a Markov pregenerator, it is enough to check that if f ∈ D(L̄), λ > 0 and
g = (λ − L̄)f , then λminη∈X f(η) ≥ minη∈X g(η) (the other properties of a pregenerator follow
directly from L). By our construction of L̄, we have a sequence fn ∈ D(L) so that fn → f and
Lfn → L̄f . Let gn = (λ−L)fn. Since L is a Markov pregenerator, λminη∈X fn(η) ≥ minη∈X gn(η).
Since gn → g and we are dealing with continous functions on a compact space, can take n → ∞
in this relation and conclude that L̄ is a Markov pregenerator.

b) Pick gn from the range of λ − L so that gn → g. Let fn ∈ D(L) so that (λ − L)fn = gn.
Then λ(fn − fm) − L(fn − fm) = gn − gm and using ||(λ − L)f || ≥ λ||f || gives λ||fn − fm|| ≤
||gn− gm||. Since gn is Cauchy, this implies that fn is Cauchy and a limit f = limn fn exists. Now
Lfn = λfn − gn → λf − g and since L is closed, g = (λ − L)f and g is in the range of λ − L so
the range is a closed set.

3. Let ρ, ρ′ ∈ (0, 1) and ρ 6= ρ′. Show that in finite volume the Bernoulli measures νρ and νρ′
are absolutely continuous with respect to each other, but in infinite volume they are not.

Solution: In finite volume the only set that has zero Bernoulli measure for any parameter ρ is
the empty set so absolute continuity is clear in the finite volume case. For the infinite volume
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case, consider Bernoulli measures on Z (extension to higher dimensions will follow from similar
constructions).

Let (In) be a sequence of finite intervals of Z so that x < y for x ∈ In and y ∈ In+1 and
∪nIn = {0, 1, 2, ...}. Let in = |In| be the number of points in In. Consider now the event A that
for each interval In there is a site in In so that there is no particle present there. The Bernoulli-ρ
probability of this event is then

νρ(A) =
∞∏
n=1

(1− ρin).

Thus

log νρ(A) =
∞∑
n=1

log(1− ρin).

Let us assume that ρ < ρ′. Our goal is to pick the in so that for one of the parameters ρ or ρ′
the above series diverges to −∞ (so that the probability is zero) while for the other it stays finite.
First of all, we note that

∞∑
n=1

log(1− (ρ′)in) ≤ −
∞∑
n=1

(ρ′)in .

So if we pick in = −[ logn
log ρ′

], the series is comparable with the harmonic series and it diverges to
−∞.

On the other hand, we can find an α > 0 so that log(1− x) ≥ −αx for x ∈ [0, ρ] (e.g. α = 1
1−ρ)

and

∞∑
n=1

log(1− ρin) ≥ −α
∞∑
n=1

ρin .

For the in above, the series is comparable with the series

−α
∞∑
n=1

n
− log ρ

log ρ′ .

Since 0 < ρ < ρ′ < 1, log ρ
log ρ′

> 1 and this series converges to a finite value. νρ′(A) = 0 but
νρ(A) > 0. To find an event A′ so that the roles of ρ and ρ′ are reversed, consider just the event
where on each interval there is a site where there is a particle present.

4. a) Show that the following are Markov pregenerators.

i) L = T − 1, where T maps non-negative functions of C(X) into non-negative functions of
C(X) (X as in problem 2), is defined on all of C(X) and satisfies T1 = 1.

ii) Let X = [0, 1] and Lf = 1
2
f ′′ with D(L) = {f ∈ C(X) : f ′′ ∈ C(X), f ′(0) = f ′(1) = 0}.

iii) X = [0, 1] and Lf = 1
2
f ′′ with D(L) = {f ∈ C(X) : f ′′ ∈ C(X), f ′′(0) = f ′′(1) = 0}.
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b) Show that all of these Markov pregenerators are actually Markov generators. What are the
corresponding Markov processes?

Solution: a) To check that the domains in ii) and iii) are dense, we shall need the following
version of the Stone-Weierstrass theorem.

Theorem: Let X be a compact Hausdorff space and B be a closed subalgebra of C(X). If
1 ∈ B and B separates points (i.e. for all x, y ∈ X so that x 6= y we can find a f ∈ B such that
f(x) 6= f(y)) then B = C(X).

For a proof, see e.g. Reed and Simon: Methods of Mathematical physics vol 1.

i) Recall that we had three conditions to check for an operator to be a Markov pregenerator.
First of all since D(L) = C(X), we see that D(L) is dense and contains the constant function
1. Moreover, by definition L1 = 0. We recall that a sufficient condition for the last condition
was the minimum principle: if f ∈ D(L) and f(η) = minξ∈X f(ξ), then Lf(η) ≥ 0. To check
this, note that if η is as above, g = f − f(η) is a non-negative continuous function. Also Tg =
Tf − f(η)T1 = Tf − f(η). Since this must be a non-negative function, Tf(η) ≥ f(η). Thus
Lf(η) ≥ 0 and L is a Markov pregenerator.

ii) Clearly 1 ∈ D(L) and L1 = 0. D(L) is dense by Stone-Weierstrass. Now if f(η) =
minξ∈[0,1] f(ξ), then f ′(η) = 0 (since f ′ vanished at the boundary according to our definition).
Thus the leading order behavior is determined by f ′′(η). If f ′′(η) < 0, then η could not be a
minimum so Lf(η) ≥ 0.

iii) Again 1 ∈ D(L) and L1 = 0 are clear. To apply Stone-Weierstrass, we note that now D(L) is
not an algebra, but it contains the algebra {f ∈ C(X) : f ′′ ∈ C(X), f ′(0) = f ′(1) = f ′′(0) = f ′′(1)}
which is dense by Stone-Weierstrass. Let η be a minumum point of f ∈ D(L). Then either η is
a boundary point (and Lf(η) = 0) or f ′(η) = 0 and the behavior is determined by f ′′(η) so we
conclude as in ii) that Lf(η) ≥ 0 in this case as well.

b) We need to check that the operators are closed and that the range of λ−L is C(X) for large
enough λ.

i) L is everywhere defined, i.e., bounded (continuous) so it is automatically closed. That the
range for λ − L is C(X) for large enough λ follows simply from the von Neumann series: pick
g ∈ C(X), then for

f =
1

λ

∞∑
n=0

1

λk
Lkg

(λ− L)f = g. The series converges for large enough λ since L is bounded.

T is a bounded linear mapping on C(X). Thus for each x, the mapping Tx : C(X) → R,
Txf = (Tf)(x) is a positive bounded linear functional on C(X) so by the Riesz representation
theorem, Txf =

∫
X
f(y)µ(x, dy) for some kernel µ. Thus Tf =

∫
X
f(y)µ(·, dy).Since T1 = 1, µ is

a probability kernel (i.e. µ(x,X) = 1 for all x).

Consider now the pure jump Markov process Xt for which the jump times are exponential with
rate 1 and for which the jump from x is distributed according to µ(x, ·). Then
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Ex(f(Xt)) =
∞∑
n=0

e−t
tn

n!

∫
Xn

µ(x, dy1)µ(y1, dy2) · ... · µ(yn−1, dyn)f(yn)

= e−tetTf(x)

= et(T−1)f(x)

= etLf(x).

So we conclude that L is the generator of a pure jump Markov process who’s jump times are
exponential with rate 1 and jumps are distributed according to µ.

ii),iii) That the operators are closed, follows from basic results concerning uniform convergence
and differentiation (if fn converges uniformly to f and f ′n converges uniformly to g, then f ′ = g).
To show that the range of λ − L is C(X) one has to show that the boundary value problem
λf − 1

2
f ′′ = g, f ′(0) = f ′(1) = 0 (or f ′′(0) = f ′′(1) = 0) has a solution for each g ∈ C(X). This

follows from basic theory of differential equations (variation of constants).

Consider Brownian motion which is reflected at the origin. We can write this process as |Bt|
where Bt is a standard Brownian motion. The transition function for the the reflected process is

pt(x, y) =
1√
2πt

(
e−

(x−y)2
2t + e−

(x+y)2

2t

)
where x, y ≥ 0 (we start the process at x ≥ 0). Then for any C2[0,∞)

E0(f(|Bt|))− f(0)

t
=

1

t

(∫ ∞
0

(
1√
2π

2e−
y2

2 (f(0) +
√
tyf ′(0) +O(t))

)
dy − f(0)

)
.

This can only have a limit if f ′(0) = 0. So it stands to reason that if we consider Brownian
motion reflected at 0 and 1, then we are in the case with the Neumann boundary conditions.

Consider now the case where the boundary conditions are f ′′(0) = f ′′(1) = 0. As the generator
is still the Laplacian, we expect that the process will again be Brownian motion with some special
properties near the boundary. Let us start the process at 0 and consider the Markov evolution
S(t)f(0) = E0(f(Xt)) for some function f in the domain of the generator. From the properties of
Markov generators and the definition of L, we see that

d

dt
S(t)f(0) = LS(t)f(0) = S(t)(Lf)(0) = 0.

Thus S(t)f(0) = f(0). So if we start the process at 0, it stays at zero for all times. Using the same
argument, this happens if we start the process at 1. So we conclude that our process is Brownian
motion which is absorbed at 0 and 1, i.e. if the process is started at x ∈ (0, 1), it behaves like a
normal Brownian motion untill it hits either the point 0 or 1 and when it hits one of the boundary
points, it remains at this point for all of eternity.
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