
STOCHASTIC PARTICLE SYSTEMS - EXERCISE 4: SOLUTIONS

This week all of the exercises are from Seppäläinen’s notes.

1. Seppäläinen Exercise 2.2 - page 36 (The event that jumps don’t occur simultanously, for
each x there are only finitely many jumps to and from x in any finite time interval and that all
connected components are finite in suitable time intervals is measurable and has probability one).

Solution: Let {T(x,y)} be the collection of independent Poisson processes (which we view as
random points on (0,∞)) used to construct the exclusion process (T(x,y) has rate p(x, y)). We
then define T ′x = ∪y(T(x,y) ∪ T(y,x)) to be the set of times when a jump to or from x can occur. As
mentioned in Seppäläinen’s notes, T ′x is a Poisson process with rate 2. We then write Ω̃ for the
set of realizations of the collection of Poisson processes so that for every T ∈ (0,∞), T ′x has only
finitely many points in [0, T ] and for (x, y) 6= (x′, y′), T(x,y) and T(x′,y′) are disjoint, i.e. there is no
common jump time.

Since we have a countable collection of Poisson processes, the measurability of the event that
T ′x has only finitely many points in [0, T ] is clear. Again by countability the event that for
(x, y) 6= (x′, y′), T(x,y) and T(x′,y′) are disjoint is measurable. So Ω̃ is a measurable set. To show
that it has probability one, we note that T ′x has only finitely many points in [0, T ] a.s. since T ′x is
a Poisson process as well. That T(x,y) and T(x′,y′) are a.s. disjoint for (x, y) 6= (x′, y′) follows from
the fact that we are dealing with continunous distributions. So Ω̃ has probability one.

Let Ω1 be the event that the random graph G0,t0 (containing of all edges that represent a jump
before time t0) has only finite connected components. We consider its complement. Recall that by
translation invariance, this is equivalent to the origin being in an infinite connected component.
Consider then the event Am that there is a self avoiding path of length m starting from the origin
that stays in the connected component of the origing. This is an event one can construct with
countable operations from the Poisson realizations. Thus lim supAm (i.e. the event that there
are arbitrarily long paths) is also measurable and by the Borel-Cantelli argument in Seppäläinen’s
notes, it has measure zero. But this means that Ω1 is measurable and has probability one. We then
repeat the argument for each G(k−1)t0,kt0 (and have a set Ωk). So taking Ω̃ ∩ ∩∞k=1Ωk shows that
we have a measurable set with probability one so that there are no infinite connected components
and the jumps behave nicely.

2. Seppäläinen Exercise 2.3. - page 36 (The generator of the exclusion process is not defined
on all continuous functions and it is not continuous on cylinder functions).

Solution: First we wish to construct a continuous function f : {0, 1}Zd → R so that Lf is not
defined. So it is enough to find a point η ∈ {0, 1}Zd so that Lf(η) = −∞. Let us consider a very
simple case: d = 1 and p(x, y) = δy,x+1 i.e. the totally asymetric case in one dimension. Let us
now define the sets An = {−2n,−2(n− 1), ...− 2, 0, 2, ..., 2n} and the function f : {0, 1}Z → R by

1



f(η) =
∞∑
n=1

1

n2
ηAn ,

where ηAn =
∏

x∈An
η(x). This is a continuous function. To see this, consider two configurations

η and η′. Recall that the metric on {0, 1}Z was defined so that η and η′ are close to each other if
they agree in some large set around the origin. This means that ηAn = η′An

for all n ≤ m where
m is some large number. Then |f(η)− f(η′)| ≤

∑∞
n=m

1
n2 which is small when m is large. Thus f

is continuous.

Consider now the configuration η where η(x) = 1 when x is even and η(x) = 0 when x is odd.
In the totally asymmetric case, we have for this configuration

Lf(η) =
∑
x,y∈Z

δy,x+1η(x)(1− η(y))(f(ηx,y)− f(η))

=
∑
x∈2Z

(f(ηx,x+1)− f(η))

=
∑
x∈2Z

∞∑
n=1

1

n2
(ηx,x+1
An

− ηAn).

We now note that if x /∈ An, ηx,x+1
An

= ηAn . If x ∈ An, then for our specific configuration η,
ηx,x+1
An

= 0 (since x+ 1 odd so for our configuration ηx,x+1(x) = η(x+ 1) = 0 so the product ηx,x+1
An

is zero for x ∈ An). On the other hand ηAn = 1 for the configuration we are considering. Thus for
x ∈ An, ηx,x+1

An
− ηAn = −1. So we have

Lf(η) = −
∑
x∈2Z

∞∑
n=1

1

n2
1(x ∈ An).

We are summing over non-negative terms so we can switch the order of the sums:

Lf(η) = −
∞∑
n=1

1

n2

∑
x∈2Z

1(x ∈ An)

= −
∞∑
n=1

1

n2
(2n+ 1)

= −∞.

Thus Lf is not defined for all continuous functions f . To show that L is not continuous even
among cylinder functions, consider the cylinder functions fm(η) =

∑m
n=1

1
n2ηAn now ||fm|| ≤ π2

6
but arguing as above, we see that

||Lfm|| ≥
m∑
n=1

2n+ 1

n2

which is unbounded.
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3. Seppäläinen Exercise 2.5. - page 36 (Showing directly without semigroup theory that
Mt = f(ηt)−

∫ t
0
Lf(ηs)ds is a martingale).

Remark: In the solution, most statements and equation hold only almost surely, but for brevity,
we refrain from writing this every time.

Solution: Let f be a cylinder function on X = {0, 1}Zd . What we want to show is that for t > s
E(Mt −Ms|Fs) = 0, where Fs is the filtration of the exclusion process ηt. Let us partition the
interval [s, t] into m subintervals [si, si+1], where si+1 − si = δ = t−s

m
(so s1 = s, sm+1 = t). We

then have

E(Mt −Ms|Fs) = E

(
f(ηt)− f(ηs)−

∫ t

s

Lf(ηu)du

∣∣∣∣Fs)
= E

(
m∑
i=1

(
f(ηsi+1

)− f(ηsi
)−

∫ si+1

si

Lf(ηu)du

)∣∣∣∣∣Fs
)
.

Using the ’tower property of conditional expectation’ (i.e. that for F ⊂ G, E(E(X|G)|F) =
E(X|F)), we note that E(f(ηsi+1

)|Fs) = E(E(f(ηsi+1
)|Fsi

)|Fs). So it is enough to show that

E

(
m∑
i=1

(
E(f(ηsi+1

)|Fsi
)− f(ηsi

)−
∫ si+1

si

Lf(ηu)du

)∣∣∣∣∣Fs
)

= 0.

Now using the Markov property of the exclusion process and rearranging the terms slightly
shows that

E(f(ηsi+1
)|Fsi

)− f(ηsi
)−

∫ si+1

si

Lf(ηu)du

= Eηsi (f(ηδ))− f(ηsi
)− δLf(ηsi

)− δ(Lf(ηsi+1
)− Lf(ηsi

)) +

∫ si+1

si

(Lf(ηsi+1
)− Lf(ηu))du.

For the first three terms, we note that (Seppäläinen (2.14))

|Eηsi (f(ηδ))− f(ηsi
)− δLf(ηsi

)| = |S(δ)f(ηsi
)− f(ηsi

)− δLf(ηsi
)|

≤ sup
η∈X
|S(δ)f(η)− f(η)− δLf(η)|

≤ C(f)δ2,

where C(f) is some constant depending on f . Thus

m∑
i=1

|Eηsi (f(ηδ))− f(ηsi
)− δLf(ηsi

)| ≤ C(f)(t− s)δ.

For the next term, we note that

m∑
i=1

δ(Lf(ηsi+1
)− Lf(ηsi

)) = δ(Lf(ηt)− Lf(ηs)).
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For a cylinder function f , Lf ∈ C(X) and there exists a constant B(f) so that ||Lf ||∞ ≤ B(f) <
∞ (Seppäläinen (2.13) or a simple argument from the formula for the generator and the definition
of a cylinder function). Thus ∣∣∣∣∣

m∑
i=1

δ(Lf(ηsi+1
)− Lf(ηsi

))

∣∣∣∣∣ ≤ 2B(f)δ.

So we see that

|E(Mt −Ms|Fs)| ≤ C(f)(t− s)δ + 2B(f)δ + E

(∣∣∣∣∣
m∑
i=1

Lf(ηsi+1
)δ −

∫ t

s

Lf(ηu)du

∣∣∣∣∣
∣∣∣∣∣Fs

)
.

Since η is RCLL and Lf ∈ C(X), (Lf) ◦ η is RCLL so (Lf) ◦ η is Riemann integrable. Thus

m∑
i=1

Lf(ηsi+1
)δ −

∫ t

s

Lf(ηu)du→ 0

as m→∞. Again since ||Lf ||∞ <∞, dominated convergence implies that

E

(∣∣∣∣∣
m∑
i=1

Lf(ηsi+1
)δ −

∫ t

s

Lf(ηu)du

∣∣∣∣∣
∣∣∣∣∣Fs

)
→ 0

as m→∞. Since δ → 0 as m→∞ and the left side of the equation is independent of m, we see
that E(Mt −Ms|Fs) = 0.

4. Seppäläinen Exercise 3.5. - page 50 (Semigroup formalism in a couple of deterministic cases).

Solution: a) For (S(t)f)(x) = f(x + at), there are several ’natural’ Banach spaces on which
S(t) can act and be strongly continuous. For example (see Rudin: Real and Complex analysis -
Theorem 9.5) for p ∈ [1,∞) and f ∈ Lp(R), the mapping t 7→ ft, where ft(x) = f(x − t) is a
uniformly continuous mapping of R into Lp(R). In particular, for each ε > 0, there is a δ > 0 so
that for 0 ≤ t < δ, ||S(t)f − f ||p = ||f−at − f0||p < ε so S is strongly continuous on Lp(R) for
p ∈ [1,∞).

During the course, we have mainly been interested in Feller processes. According to our (Sep-
päläinen’s) definition, Feller processes act on bounded continuous mappings. So another place to
look for suitable Banach spaces is subspaces of Cb(R) (the bounded continuous functions on R)
with the sup-norm. In this framework, the strong continuity of S becomes a question of uniform
continuity. So we want a Banach space of bounded continuous functions which are uniformly
continuous.

This in fact requires a proper subspace of Cb(R). To see this, note that uniform continuity
implies that for any sequences (xn), (yn) so that |xn − yn| → 0, one has |f(xn)− f(yn)| → 0. One
then considers the function x 7→ sinx2 and the sequences xn =

√
(n+ 1

2
)π and yn =

√
nπ. Then

|xn − yn| → 0 but | sinx2
n − sin y2

n| = 1. So not all bounded continuous functions are uniformly
continuous and S(t) is not strongly continuous on Cb(R). One natural subspace of Cb(R) for which
all functions in it are uniformly continuous is C0(R) - the space of continuous functions vanishing
at infinity (i.e. limx→±∞ f(x) = 0). In fact, many books define Feller processes to act on C0(R)
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instead of Cb(R). So depending on one’s approach, one can consider S as acting on the Banach
spaces C0(R) or Lp(R) with p ∈ [1,∞) (or perhaps some closed subspaces of these).

That Lf = af ′ follows from the definition of the generator. A heuristic argument for this also
comes from considering a Taylor series expansion of a function f . Formally one can write a Taylor
series expansion as f(x + a) = ea

d
dxf(x). So this would suggest that S(t) = eta

d
dx and since one

wants to think of the generator L as something that satisfies S(t) = etL, one would then get
L = a d

dx
.

Let us now consider an arbitrary g ∈ C0(R) and f ∈ D(L) (as L(D(L)) ⊂ C0(R) we note that
f is continuously differentiable and a derivative which vanishes at infinity) so that

−af ′ + λf = g.

We can of course consider this equation in a moving coordinate system: for any t ≥ 0 and x ∈ R

−af ′(x+ at) + λf(x+ at) = g(x+ at).

Now we can consider the derivative acting on f to be with respect to t instead of x and we have

− d

dt
f(x+ at) + λf(x+ at) = g(x+ at).

Multiplying by e−λt and integrating over [0,∞) (note that everything works nicely since we are
dealing with C0(R) functions) we get (by integrating by parts)∫ ∞

0

e−λtg(x+ at)dt = −
∫ ∞

0

e−λt
d

dt
f(x+ at)dt+ λ

∫ ∞
0

e−λtf(x+ at)dt

=

∞/
0

−e−λtf(x+ at) +

∫ ∞
0

d

dt

(
e−λt

)
f(x+ at)dt+ λ

∫ ∞
0

e−λtf(x+ at)dt

= f(x).

So we have showed that if (λ − L)f = g, f is in the domain of L (which is a subset of C0(R))
and g ∈ C0(R), then

f(x) =

∫ ∞
0

e−λt(S(t)g)(x)dt.

Then using the integration theory in Banach spaces discussed in Seppäläinen, one can argue
that this is an instance of a general formula called the resolvent formula:

(λ− L)−1g =

∫ ∞
0

e−λtS(t)gdt.

Note that in Banach spaces there are several concepts of the integral. We (following Seppäläinen)
consider Riemann integration in Banach spaces. That is we consider integrals to be strong limits
of Riemann sums. The Bochner integral is the generalization of the Lebesgue integral to Banach
spaces. The idea of the Bochner integral is to first define it for simple functions in the natural
way and then for measurable functions as a limit of the simple function case. Finally there is
the Pettis or weak integral which is defined through duality. A function f : X → B (X is some
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measure space and B is a Banach space) is weakly integrable if there is a vector v ∈ B so that
〈φ, v〉 =

∫
〈φ, f(t)〉µ(dt) for all bounded linear functionals φ. Then one writes v =

∫
f(t)µ(dt).

b) We now consider the simple case where our Banach space is just R and S(t)x = e−atx for
some fixed a. Then Lx = −ax and D(L) = R. Consider now the equation

(λ− L)x = y.

The solution of this is of course x = 1
a+λ

y. On the other hand∫ ∞
0

e−λtS(t)xdt = x

∫ ∞
0

e−(λ+a)tdt =
1

λ+ a
x.

So we have another instance of the resolvent formula.
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