
STOCHASTIC PARTICLE SYSTEMS: EXERCISE 3 - SOLUTIONS

1. Let (Ti)∞i=1 be independent Poisson processes with rates (ri)
∞
i=1 satisfying

∑∞
i=1 ri <∞. Let

T = ∪∞i=1Ti. Show that T is a Poisson process with rate r =
∑

i ri. Moreover, for any s ∈ (0,∞),
show that first point in T larger than s comes from the set Ti with probability ri

r
.

Solution: As the laws of random variables are characterized by their Laplace transformations,
the laws of random measures µ (such as

∑
t∈T δt for the Poisson process) are characterised by

their Laplace functionals f 7→ E(exp(−
∫
fdµ)), where f is a positive measurable function (or if

µ is a random measure on a locally compact second countable Hausdorff space it is enough to
consider positive compactly supported continuous functions). For a proof of this, see for example
the beginning of chapter 12 of Kallenberg’s Foundations of Modern Probability.

So to show that T is a Poisson process, it is enough to consider its Laplace functional. Let
us write Ni for the random measure associated to the point set Ti and N =

∑
iNi, which is the

random measure associated with T (recall that the random measures are just sums of δ-measures).

E(exp(−
∫
fdN)) =

∏
i

E(exp(−
∫
fdNi))

=
∏
i

exp

(
−ri

∫ ∞
0

(
1− e−f(x)

)
dx

)
= exp

(
−r
∫ ∞

0

(
1− e−f(x)

)
dx

)
.

This is just the Laplace functional of the Poisson process with rate r so we see that indeed T
is a Poisson process with rate r.

Since T is a Poisson process, there are almost surely only finitely many points of the Process
on each interval (s, t). Thus for each s > 0, τs = min{T ∈ T : T > s} is almost surely well
defined and one can check that it is a random variable (i.e. it is measurable). We are interested
in the probability P (τs ∈ Ti). The event {τs ∈ Ti} can be written as {Ni(s, τs] = 1} or with some
redundancy as {Ni(s, τs] = 1, N(s, τs] = 1}. Thus

P (τs ∈ Ti) = P (Ni(s, τs] = 1|N(s, τs] = 1).

let us now consider for any ε > 0, the probability P (N i(s, s + ε] = 1|N(s, s + ε] = 1). Noting
that N i(s, s + ε] is Poisson with parameter riε (and similarly for N and N j for j 6= i) and using
the independence of N i and N j for j 6= i,
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P (N i(s, s+ ε] = 1|N(s, s+ ε] = 1) =
P (N i(s, s+ ε] = 1, N j(s, s+ ε] = 0, for j 6= i)

P (N(s, s+ ε] = 1)

=
e−riεriε

∏
j 6=i e

−rjε

e−rεrε

=
ri
r
.

Then conditioning (or disintegrating) P (Ni(s, τs] = 1|N(s, τs] = 1) on τs gives the desired result.

2. Let T = {T1, T2, ...} be a Poisson process. Show that given Tn+1, the distribution of
(T1, ..., Tn) is the distribution of (S1, ..., Sn) where (S1, .., Sn) is gotten from i.i.d. uniform random
variables on [0, Tn+1] by putting the random variables into increasing order.

Remark: A related and perhaps a bit more rigorous formulation and solution of the problem
would be to show a similar results for variables on [0, 1] by defining Ui = Ti

Tn+1
and Vi = Si

Tn+1
.

Solution: Let P be the law of (T1, ..., Tn+1) and Q the law of (S1, ..., Sn). We wish to show
that P (A|Tn+1) = Q(A). One way to do this, is to show that for all continuous functions f :
[0, Tn+1]

n → R, EP (f(T1, ..., Tn)|Tn+1) = EQ(f(S1, ..., Sn)). By definition,

EQ(f(S1, ..., Sn)) =
n!

T nn+1

∫ Tn+1

0

dsn

∫ sn

0

dsn−1...

∫ s2

0

ds1f(s1, s2, ..., sn).

Note that the factor n! comes from the fact that we condition n uniform random variables on
[0, Tn+1] to be in increasing order. By symmetry, the event we condition on has probability 1

n!
.

On the other hand, if λ is the rate of the Poisson process, the conditional density of (T1, ..., Tn)
given Tn+1 is

∏n+1
i=1 e

−λ(ti−ti−1)∫ Tn+1

0
dtn
∫ tn

0
dtn−1...

∫ t2
0
dt1
∏n+1

i=1 e
−λ(ti−ti−1)

1{ti≥ti−1} =
n!

T nn+1e
−λTn+1

n+1∏
i=1

e−λ(ti−ti−1)1{ti≥ti−1}

=
n!

T nn+1

n+1∏
i=1

1{ti≥ti−1}

where t0 = 0 and tn+1 = Tn+1. This is precisely the density of Q so we are done.

3. Consider a discrete time Markov chain Xn on a countable state space S. Define the hitting
time τy = inf{n ≥ 1 : Xn = y} and then define recursively τ k+1

y = τ ky + τy ◦θτky , where θ is the shift
operator and τ 0

y = 0. Note that τ ky is the kth time the process visits y. Define also the occupation
times

κy = sup{k : τ ky <∞} =
∞∑
n=1

1{Xn = y}

for y ∈ S and the following hitting probabilities
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rxy = P x(τy <∞) = P x(κy > 0).

a) In the discrete case, a random variable T : Ω → N ∪ {∞} is a stopping time if {ω : T (ω) =
n} ∈ Fn, where Fn is the filtration on the space. Argue that τ ky is a stopping time for each k.

b) Formulate and prove the strong Markov property in the discrete time and discrete space
setup.

c) Show that

P x(κy ≥ k) = P x(τ ky <∞) = rxyr
k−1
yy .

d) Conclude that if the process starts from x ∈ S, the number of visits to x is either almost
surely infinite, or almost surely finite. In the first case, the state x is called recurrent and in the
second it is called transient.

Hints: a),b)⇒c)⇒d) and induction in c).

Solution: a) We shall do this by induction. The case k = 0 clearly holds. We note that we can
write the event {τ k+1

y = t} as

{τ k+1
y = t} =

t⋃
s=0

{τ ky = s} ∩ {τy ◦ θτky = t− s}

=
t⋃

s=0

{τ ky = s} ∩ {τy ◦ θs = t− s}

=
t⋃

s=0

{τ ky = s} ∩ {inf{n ≥ 1 : Xs+n = y} = t− s}.

The set {inf{n ≥ 1 : Xs+n = y} = t − s} is completely determined by the chain up to time
t, i.e. for a given ω, to know if inf{n ≥ 1 : Xs+n(ω) = y} = t − s, we need to know only
(X1(ω), X2(ω), ..., Xt(ω)). Thus for Fj = σ(Xi, i ≤ j), {inf{n ≥ 1 : Xs+n = y} = t− s} ∈ Ft. On
the other hand, by the induction assumption, {τ ky = s} ∈ Fs. Thus

{τ ky = s} ∩ {inf{n ≥ 1 : Xs+n = y} = t− s} ∈ Ft

and {τ k+1
y = t} ∈ Ft so τ ky is a stopping time for each k.

b) One could formulate the strong Markov property just as in the continuum case. For the
problem c), the following equivalent formulation is more useful. For a discrete time chain X and
a discrete stopping time τ ,

P (θτX ∈ A|Fτ ) = PXτ (A)

almost surely on the set {τ <∞} for any cylinder set A.

The proof of this goes as the continuous time one in the case where the stopping time takes
only countably many values. For the proof of this, see the lectures.

c) Using the strong Markov property,
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P x(τ k+1
y <∞) = P x(τ ky <∞, τy ◦ θτky <∞)

= P x(τ ky <∞)P y(τy <∞)

= ryyP
x(τ ky <∞).

The result follows by induction.

d) So we see that if the process starts from x, the probability that it returns to x more than k
times is given by

P x(κx ≥ k) = rkxx

If rxx = 1, the process then almost surely returns to x infinitely many times. If rxx < 1, it
almost surely visits x only finitely many times.

4. a) Let X be a discrete time Markov process on some space S and let X have an invariant
measure ν. Show that for any measurable B ⊂ S, P ν(Xn ∈ B for infinitely many n) ≥ ν(B).

b) Now let the space S be countable so that X is a discrete time Markov chain on S. Show
that if ν(x) > 0 for some state x ∈ S, then x is recurrent.

Hints: In b), use d) of the previous problem and a) from this one.

Solution: a) This is just the reverse Fatou lemma and the definition of an invariant measure:

P ν(Xn ∈ B for infinitely many n) = Eν

(
lim sup
n→∞

1{Xn∈B}

)
≥ lim sup

n→∞
P ν(Xn ∈ B)

= lim sup
n→∞

ν(B)

= ν(B).

b) By a) and using the definition of P ν (i.e. P ν(A) =
∫
P x(A)ν(dx))

0 < ν(x)

≤ P ν(Xn = x for infinitely many n)

=

∫
P y(Xn = x for infinitely many n)ν(dy).

By problem 3 c), P y(Xn = x for infinitely many n) can be non-zero only if rxx = 1, so we see
that ν(x) > 0 implies that rxx = 1 and x is recurrent.

5. let Nt be a Poisson process with rate λ and let Ft = σ(Ns, s ≤ t) be the smallest σ-algebra
so that Ns is Ft measurable when s ≤ t. Show that

a)
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E(Nt − λt|Fs) = Ns − λs

b)

E((Nt − λt)2 − λt|Fs) = (Ns − λs)2 − λs

Solution: a) We write

E(Nt − λt|Fs) = E((Nt −Ns)− λ(t− s)|Fs) + E(Ns − λs|Fs)
= E(Nt −Ns − λ(t− s)) +Ns − λs.

Here we used the fact that Nt − Ns is independent of Fs (i.e. that the Poisson process has
independent increments) and that Ns is Fs measurable.

We now note that Nt −Ns = N(s, t] is also poisson distributed and its mean is λ(t− s) so we
have the desired result.

b) Here we write

(Nt − λt)2 = (Nt −Ns − λ(t− s))2 + 2(Nt − λt)(Ns − λs)− (Ns − λs)2.

Similar reasoning as in a) and using the result of a) yield

E((Nt − λt)2 − λt|Fs) = E((Nt −Ns − λ(t− s))2 − λ(t− s)) + 2(Ns − λs)E(Nt − λt|Fs)
− (Ns − λs)2 − λs
= 0 + 2(Ns − λs)2 − (Ns − λs)2 − λs
= (Ns − λs)2 − λs.
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