
STOCHASTIC PARTICLE SYSTEMS - EXERCISE 2, SOLUTIONS

1. a) Let (ξn)n be independent R+-valued random variables. Show that
∑

n ξn converges almost
surely if and only if

∑
nE(min(ξn, 1)) converges.

Hint: For one direction, you might want to consider E(e−
∑

n ξn) and use the inequality 1− x ≤
e−x ≤ 1− ax with a = 1− e−1 and x ∈ [0, 1] in some way.

b) Let X be a continuous time Markov chain on a countable state space S and let the process
have a bounded rate function c. Let Tn be the time of the nth jump. Show that Tn →∞ a.s.

Hint: Kolmogorov’s 0-1 law (see for example Durrett’s Probability: Theory and examples or
Kallenberg’s Foundations of moderns probability) and a).

Solution: a) Assume that
∑

nE(min(ξn, 1)) <∞. Since ξn are non-negative, we can use Fubini’s
theorem and

E

(∑
n

min(ξn, 1)

)
=
∑
n

E(min(ξn, 1)) <∞.

Thus
∑

n min(ξn, 1) < ∞ a.s. This implies that almost surely ξn > 1 only for finitely many n
(otherwise infinitely many terms in the series would be one and it would diverge). This implies
that almost surely

∑
n ξn and

∑
n min(ξn, 1) differ only for finitely many terms in the series. This

does not affect the convergence so we see that also
∑

n ξn <∞ a.s.

For the other direction, we note that if
∑

n ξn < ∞ a.s., then
∑

n min(ξn, 1) a.s., so we can
assume that ξn ≤ 1 for all n. Also for a = 1 − e−1 and x ∈ [0, 1], 1 − x ≤ e−x ≤ 1 − ax. Thus
using independence

0 < E

(
exp

(
−
∑
n

ξn

))
=
∏
n

E(e−ξn)

≤
∏
n

(1− aE(ξn))

≤
∏
n

e−aE(ξn)

= exp

(
−a
∑
n

E(ξn)

)

so also
∑

nE(ξn) <∞, which implies that in the general case,
∑

nE(min(1, ξn)) <∞.
�

b) We shall need the Kolmogorov 0-1 law:

Theorem: (Kolmogorov’s 0-1 law) Let (Ω,F , P ) be a probability space, F1,F2, ... be indepen-
dent σ-algebras such that Fn ⊂ F for all n. Let Gn = σ(Fn,Fn+1, ...) be the smallest σ-algebra
containing the σ-algebras Fm for m ≥ n. Then for any G ∈ G = ∩∞n=1Gn, P (G) ∈ {0, 1}.
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For a proof see for example Durrett’s Probability: Theory and examples or Kallenberg’s Foun-
dations of modern probability.

Now if we consider the setting of a) and set Fn = σ(ξn), we see that the event {
∑

n ξn converges}
is a tail event, i.e. it is in the σ-algebra G. By independence and Kolmogorov’s 0-1 law, we see
that this event has either probability one or zero. Thus its complement, the event that the series
diverges has either probability zero or one and the probability of these events is determined by
the summability of E(min(ξn, 1)).

Considering now the Markov chain, we note that Tn can be bounded from below by a sum
of independent non-negative random variables: Tn =

∑n−1
k=0

τk
c(Yk)

, where (Yn) is the discrete time
Markov chain used to build X and τn is exponential with mean one. So if c is bounded, say
c(x) ≤M for all x, then Tn ≥M−1

∑n−1
k=0 τk. Also E(min(τn, 1)) = m > 0, where m is independent

of n so our reasoning implies that
∑n−1

k=0 τk →∞ a.s. so Tn →∞ a.s.

Remark: One could of course use the law of large numbers in b).

2. Consider a continuous time Markov chain X (on some countable state space S) with tran-
sition probability pt(x, y) = P x(Xt = y) and some bounded strictly positive rate function. Show
that it has the Markov property, i.e. that for any 0 ≤ t0 < t1 < ... < tn and x, x0, ..., xn ∈ S,

P x(Xtn = xn|Xtn−1 = xn−1, ..., Xt0 = x0) = ptn−tn−1(xn−1, xn)

whenever the event we condition on has positive probability.

Hint: To keep things simpler (mainly notation), consider first the n = 1 case.

Solution: By the previous problem, Tn →∞ a.s. so we can write

pt(x, y) =
∞∑
n=0

P x(Xt = y;Tn ≤ t < Tn+1)

=
∞∑
n=0

P x(Yn = y;Tn ≤ t < Tn+1)

=
∞∑
n=0

∑
y1,...,yn−1∈S

P x(Tn ≤ t < Tn+1|Yn = y, Yn−1 = yn−1, ..., Y1 = y1)

× P x(Yn = y, Yn−1 = yn−1, ..., Y1 = y1).

If any of the events we condition on has zero probability, we interpret that term in the sum as
zero. If we write y0 = x and yn = y, we see that

P x(Tn ≤ t < Tn+1|Yn = y, Yn−1 = yn−1, ..., Y1 = y1) = P

(
n−1∑
k=0

τkc(yk)
−1 ≤ t <

n∑
k=0

τkc(yk)
−1

)
.

If we write Q{y0,...,yn−1} for the law of
∑n−1

k=0 τkc(yk)
−1, we see by Fubini’s theorem that the fact

that τnc(y)−1 is exponential implies that
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pt(x, y) =
∞∑
n=0

∑
y1,...,yn−1∈S

∫ t

0

e−c(y)(t−s)dQ{y0,...,yn−1}(s)P
x(Y1 = y1, ..., Yn = y).

Let us now show that for t1 < t2 and x1, x2 ∈ S,

P x(Xt1 = x1, Xt2 = x2) = P x(Xt1 = x1)P x1(Xt2−t1 = x2).

We begin with the following expansion

P x(Xt1 = x1, Xt2 = x2)

=
∑

0≤n1≤n2

P x(Yn1 = x1, Yn2 = x2, Tn1 ≤ t1 < Tn1 + τn1c(x1)−1, Tn2 ≤ t2 < Tn2 + τn2c(x2)−1),

which is just using the fact that the intervals [Tn, Tn+1) partition [0,∞) and we impose t1 < t2 in
the summation. Let us now condition/sum over all of the states Yi for i = 1, ..., n2, while imposing
Yn1 = x1 and Yn2 = x2 with a Kroenecker δ inside the sum. We have

P x(Xt1 = x1, Xt2 = x2)

=
∑

0≤n1≤n2

∑
y1,...,yn2∈S

δyn1 ,x1δyn2 ,x2P
x(Tnj

≤ tj < Tnj
+ τnj

c(xj)
−1, j = 1, 2|Yk = yk, k = 1, ..., n2)

× P x(Yk = yk, k = 1, ..., n2).

Since τn1c(x1)−1 is exponential with parameter c(x1), this becomes

∑
0≤n1≤n2

∑
y1,...,yn2∈S

δyn1 ,x1δyn2 ,x2

∫
u1≤t1

∫
t1<u1+u2<t2

c(x1)e−c(x1)u2

×P x

(
u1 + u2 +

n2−1∑
l=n1+1

τlc(yl) ≤ t2 < u1 + u2 +

n2∑
l=n1+1

τlc(yl)

)
du2dQ{y0,...,n1−1}(u1)

× P x(Yk = yk, k = 1, ..., n2).

Next we make the change of variables s1 = u1 and s2 = u1 + u2 − t1. Then we have

∑
0≤n1≤n2

∑
y1,...,yn2∈S

δyn1 ,x1δyn2 ,x2

∫ t1

s1=0

∫ t2−t1

s2=0

c(x1)e−c(x1)(s2−s1+t1)

×P x

(
s2 +

n2−1∑
l=n1+1

τlc(yl) ≤ t2 − t1 < s2 +

n2∑
l=n1+1

τlc(yl)

)
ds2dQ{y0,...,n1−1}(s1)

× P x(Yk = yk, k = 1, ..., n2).

Now using the Markov property of the chain (Yn), we see that this factors nicely:
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∑
0≤n1≤n2

∑
y1,...,yn1∈S

δyn1 ,x1

∫ t1

s1=0

e−c(x1)(t1−s1)dQ{y0,...,n1−1}(s1)P x(Yi = yi, i = 1, ..., n1)

×
∑

yn1+1,...,yn2∈S

δyn2 ,x2

∫ t2−t1

s2=0

P

(
s2 +

n2−1∑
l=n1+1

τlc(yl)
−1 ≤ t2 − t1 < s2 +

n2∑
l=n1+1

τlc(yl)
−1

)
c(x1)e−c(x1)s2ds2

× P x1(Y1 = yn1+1, ..., Yn2−n1 = yn2).

We now set m = n2 − n1 and split the sum
∑

n1≤n2
into

∑
n1≥0

∑
m≥0. We note after renaming

the summation variables, the second sum then becomes independent of n1 and we can write it as

∞∑
m=0

∑
z1,...,zm∈S

δzm,x2P
x1

(
m−1∑
l=0

τlc(zl)
−1 ≤ t2 − t1 <

m∑
l=0

τlc(zl)
−1

)
P x1(Y1 = z1, ..., Ym = zm)

pt2−t1(x1, x2),

where we wrote z0 = x1. The n1 sum we recognize as pt1(x, x1). So we conclude that

P x(X(t1) = x1, X(t2) = x2) = pt1(x, x1)pt2−t1(x1, x2).

Looking at our proof up to now, we notice that the same reasoning works for proving

P x(X(t1) = x1, X(t2) = x2, ..., X(tn) = xn) = pt1(x, x1)pt2−t1(x1, x2) · ... · ptn−tn−1(xn−1, xn).

The only difference in practice would be more indeces ni, but again we would see the same
factoring and we would be able to use the Markov property of the discrete chain etc. So in fact
we have proved the Markov property for X.

3. Consider a metric space (Y, d). Let q : Y × Y → R+, q(x, y) = min(d(x, y), 1) (this is also a
metric on Y ) and let

Λ′ = {λ ∈ C(R+,R+) : λ is an increasing bijection}.

Then define

γ(λ) = sup
s>t≥0

∣∣∣∣log
λ(s)− λ(t)

t− s

∣∣∣∣
and Λ = {λ ∈ Λ′ : γ(λ) <∞}.

For x, y ∈ DY [0,∞) (the space of functions from [0,∞) into Y which are right continuous and
have left limits) and λ ∈ Λ we define

ρs(x, y, λ) = sup
t≥0

q(x(min(t, s)), y(min(λ(t), s)))

and
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ρ(x, y) = inf
λ∈Λ

{
max

(
γ(λ),

∫ ∞
0

e−sρs(x, y, λ)ds

)}
.

a) Show that ρ is a metric on DY [0,∞) (sometimes called the Skorohod metric and its topology
is called the Skorohod topology on DY [0,∞)).

b) Let (xn) be a sequence in DY [0,∞) and x ∈ DY [0,∞). Show that ρ(xn, x) → 0 if and only
if there is a sequence (λn) in Λ so that γ(λn)→ 0 and ρs(xn, x, λn)→ 0 at all points s where x is
continuous.

Hint: In b) you’ll probably need to use the result that each x ∈ DY [0,∞) has only countably
many points of discontinuity.

Solution: a) We begin by noting that

ρs(x, y, λ) = sup
t≥0

q(x(min(t, s)), y(min(λ(t), s)))

= sup
t≥0

q(x(min(λ−1(t), s)), y(min(t, s)))

= ρs(y, x, λ
−1).

Moreover, we note that γ(λ) = γ(λ−1). These remarks imply that ρ(x, y) = ρ(y, x).

Let us now assume that ρ(x, y) = 0. To show that x = y, the right continuity of the functions
implies that it is enough to check that they agree on points where they are continuous. To do
this, we note that ρ(x, y) = 0 implies that there is some sequence λn ∈ Λ so that γ(λn)→ 0 and∫ ∞

0

e−sρs(x, y, λn)ds→ 0.

Thus for any ε > 0 and s0 > 0

m ({s ∈ [0, s0] : ρs(x, y, λn) ≥ ε})→ 0,

where m is the Lebesgue measure on R. Since γ(λn)→ 0, we also have that for any ε > 0, there
exists a Nε so that for any s > t ≥ 0 and n ≥ Nε,∣∣∣∣log

λn(s)− λn(t)

s− t

∣∣∣∣ < ε

so some manipulation shows that for n ≥ Nε and s ∈ (0, s0],

s0(e−ε − 1) < λn(s)− s < (eε − 1)s0,

which implies that for any T > 0,

lim
n→∞

sup
0≤t≤T

|λn(t)− t| = 0.

Let us now consider a point t so that x and y are continous at t and x(t) 6= y(t). Let ε > 0 be
so that d(x(t), y(t)) > ε. By continuity, there is a neighbourhood of t so that d(x(s), y(s)) > ε in
this neighborhood. By the uniform convergence of λn, this implies that there is an interval so that
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for large enough n, ρs(x, y, λn) ≥ ε. Since open intervals have positive measure, this contradicts
our previous result. So x and y must agree on points where they are continuous and since we are
considering right continuous functions, x = y.

We still need to show the triangular inequality. For this, we note that for x, y, z ∈ DY [0,∞)
and λ1, λ2 ∈ Λ,

sup
s≥0

q(x(min(t, s)), z(min(λ2(λ1(t)), s))) ≤ sup
s≥0

q(x(min(t, s)), y(min(λ1(t), s)))

+ sup
s≥0

q(y(min(λ1(t), s)), z(min(λ2(λ1(t)), s)))

= sup
s≥0

q(x(min(t, s)), y(min(λ1(t), s)))

+ sup
s≥0

q(y(min(t, s)), z(min(λ2(t), s))).

Thus ρs(x, z, λ2 ◦ λ1) ≤ ρs(x, y, λ1) + ρs(y, z, λ2). We also note that

sup
s>t≥0

∣∣∣∣log
λ2(λ1(s))− λ2(λ1(t))

s− t

∣∣∣∣ = sup
s>t≥0

∣∣∣∣log
λ2(λ1(s))− λ2(λ1(t))

λ1(s)− λ1(t)
+ log

λ1(s)− λ1(t)

s− t

∣∣∣∣
≤ γ(λ2) + γ(λ1).

So λ2 ◦ λ1 ∈ Λ and we conclude that d(x, z) ≤ d(x, y) + d(y, z).

b) Since ρs(x, y, λ) ≤ 1, by dominated convergence and using the fact that functions inDY [0,∞)
have only countably many points of discontinuity we see that ρs(xn, x, λn)→ 0 on the continuity
points of x implies that

∫∞
0
e−sρs(xn, x, λn)ds → 0 so we see that if in addition γ(λn) → 0, then

ρ(x, y)→ 0.

For the other direction, let ρ(xn, x) → 0 and let t0 be a point of continuity for x. As in a),
ρ(xn, x)→ 0 implies that there is a sequence λn with γ(λn)→ 0 so that for any fixed s0 > 0 and
ε > 0,

m ({s ∈ [0, s0] : ρs(xn, x, λn) ≥ ε})→ 0.

In particular, we can pick points tn > t0 so that

ρtn(xn, x, λn) = sup
t≥0

q(xn(min(t, tn)), x(min(λn(t), tn)))→ 0.

Using the triangular inequality of q, we have

sup
t≥0

q(xn(min(t, t0)), x(min(λn(t), t0))) ≤ sup
t≥0

q(xn(min(t, t0)), x(min(λn(min(t, t0)), tn)))

+ sup
t≥0

q(x(min(λn(min(t, t0)), tn)), x(min(λn(t), t0))).

We note that since t0 < tn for all n, we can write the first term as

sup
t∈[0,t0]

q(xn(min(t, tn)), x(min(λn(t), tn))→ 0
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where the convergence follows from the definition of the points tn. For the second term, consider
the quantity we are maximizing for t ≥ t0 and t < t0 separately. For t ≥ t0 we have

q(x(min(λn(min(t, t0)), tn)), x(min(λn(t), t0))) = q(x(min(λn(t0), tn)), x(min(λn(t), t0))).

We recall that λn(t)→ t uniformly on compact sets so min(λn(t0), tn)→ t0 since tn > t0 for all
n. Also min(λn(t), t0) → t0 uniformly in t ≥ t0 so continuity of x at t0 that for t ≥ t0 we have
uniform convergence to 0.

For t < t0,

q(x(min(λn(min(t, t0)), tn)), x(min(λn(t), t0))) = q(x(min(λn(t), tn)), x(min(λn(t), t0)))

and one can again use the uniform convergence of λn and continuity of x at t0 to deduce that we
have uniform convergence of this to zero.

Thus we have found a sequence λn so that for each point of continuity t0, ρt0(x, xn, λn)→ 0.

Remark: In a) we did not explicitly use the fact that a right continuous function with left limits
has only countably many points of discontinuity. So the hint in the initial version of the problem
was misleading.

4. Let X be a continuous time Markov chain on a countable space S. We can interpret X as a
mapping X : Ω→ DS[0,∞), where Ω is the product of the sample space of a discrete time Markov
chain and the sample space of a sequence of i.i.d. random times with exponential distribution and
mean one. Let Σ be the product σ-algebra on Ω (the product of the discrete time Markov chain
σ-algebra and the σ-algebra of the i.i.d. exponential times) and F be the σ-algebra generated by
the cylinder sets of DS[0,∞). Show that X : (Ω,Σ)→ (DS[0,∞),F) is measurable.

Solution: We begin by noting that a mapping between measurable spaces f : (X,F) → (Y,G)
is measurable if f−1(A) ∈ F for all A ∈ C ⊂ G where C generates the σ-algebra G, i.e. σ(C) = G.
Let T ⊂ 2Y be the class of sets A ⊂ Y so that f−1(A) ∈ F . Then using elementary properties
of the inverse image of a function, one can check that T is a σ-algebra. By assumption, C ⊂ T .
Thus, G = σ(C) ⊂ σ(T ) = T so f−1(A) ∈ F for all A ∈ G as well, i.e. f is measurable.

Since we are dealing with the cylinder σ-algebra, which in the case of a countable state space
is generated by sets of the form {ξ ∈ DS[0,∞) : ξ(t) = y}, i.e. in our formulation above, G is the
cylinder σ-algebra and

C = {{ξ ∈ DS[0,∞) : ξt = y} : t ∈ [0,∞) and y ∈ S } .

By our initial remark, to show that X is measurable, we need to show that for each t ≥ 0 and
y ∈ S,

{ω ∈ Ω : Xt(ω) = y} ∈ Σ.

By the definition of the process X, we can write
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{ω ∈ Ω : Xt(ω) = y} =
∞⋃
n=0

{ω |Tn(ω) ≤ t < Tn+1(ω), Yn(ω) = y} .

The sets {ω|Tn(ω) ≤ t < Tn+1(ω), Yn(ω) = y} are certainly in Σ so their countable union is as
well and we see that X is measurable.

5. Let S be a countable abelian group (stick to S = Zd if you want to) and pt(x, y) be a transition
probability which is symmetric and translation invariant: pt(x, y) = pt(y, x) = pt(0, y− x). Let X
and Y be independent identically distributed continuous time Markov cahins on S with transition
probabilities pt. Show that Z = X − Y has the same distribution of (X2t)t≥0, i.e. the process run
at double speed.

Hint: It is enough to check that the finite dimensional distributions agree, i.e. you’ll probably
want to show that

P x,y(Zt1 = z1, ..., Ztn = zn)

factors nicely like a Markov chain should, only depends on x−y and agrees with the corresponding
quantity for (X2t)t. To check that it really is enough that finite dimensional distributions agree,
you’ll need a monotone class argument (or sometimes called Dynkin’s π-λ theorem) or just look
it up in any good book on probability.

Solution: Let 0 ≤ t1 < t2 < ... < tn and x, y, z1, ..., zn ∈ S. Then by independence the
independence of X and Y and using the fact that they are both

P x,y(Xt1 − Yt1 = z1, ..., Xtn − Ytn = zn)

=
∑

α1,...,αn∈S

P x,y(Xt1 = α1, Yt1 = z1 − α1, ..., Xtn = αn, Ytn = zn − αn)

=
∑

α1,...,αn∈S

P x(Xt1 = α1, ..., Xtn = αn)P y(Yt1 = z1 − α1, ..., Ytn = zn − αn)

=
∑

α1,...,αn∈S

pt1(x, α1) · ...ptn−tn−1(αn−1, αn)pt1(y, z1 − α1) · ...ptn−tn−1(zn−1 − αn−1, zn − αn)

=
∑
α1∈S

pt1(x, α1)pt1(y, z1 − α1) · ... ·
∑
αn∈S

ptn−tn−1(αn−1, αn)ptn−tn−1(zn−1 − αn−1, zn − αn).

We now note by the symmetry and translational invariance of p that

∑
αn∈S

ptn−tn−1(αn−1, αn)ptn−tn−1(zn−1 − αn−1, zn − αn)

=
∑
αn∈S

ptn−tn−1(αn−1, αn)ptn−tn−1(αn, zn − zn−1 + αn−1)

= p2(tn−tn−1)(αn−1, zn − zn−1 + αn−1)

= p2(tn−tn−1)(zn−1, zn).

A similar calculation for the α1 sum shows that
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P x,y(Xt1 − Yt1 = z1, ..., Xtn − Ytn = zn) = p2t1(x− y, z1)p2(t2−t1)(z1, z2) · ... · p2(tn−tn−1)(zn−1, zn).

So (assuming the event we condition on has positive probability)

P x,y(Xtn − Ytn = zn|Xt1 − Yt1 = z1, ..., Xtn−1 − Ytn−1 = zn−1) = p2(tn−tn−1)(zn−1, zn).

As we saw earlier, the finite dimensional distributions of X − Y depend only on the difference
of the points X0, Y0 and not their actual values. We conclude that the process X2t agrees with
the process Xt − Yt at least on the level on finite dimensional distributions. To see that they in
fact agree in distribution, we shall need the monotone class theorem.

Theorem. (Definitions) Let Ω be a set. A collection C ⊂ 2Ω is called a π-system if A,B ∈ C
implies that A ∩ B ∈ C. A collection C ⊂ 2Ω is called a λ-system if Ω ∈ D, A,B ∈ D and A ⊂ B
implies that B \ A ∈ D and A1, A2, ... ∈ D so that A1 ⊂ A2 ⊂ ... implies that ∪∞n=1An ∈ D.

(Statement) If C is a π-system, D is a λ-system and C ⊂ D, then σ(C) ⊂ D.

For a proof, see any good book on probability (e.g. Kallenberg).

Using this, we can show that the finite dimensional distributions are enough.

Proposition. Let X, Y be processes on an index set T (in our case T = [0,∞)) with paths in
U ⊂ ST (so here S is the space where the processes takes values so their paths are elements of
ST ). Then the distributions of X and Y agree if the distributions of (Xt1 , ..., Xtn) and (Yt1 , ..., Ytn)
agree for all n and ti ∈ T .

Proof: Let S be the σ-algebra of S and ST be the cylinder σ-algebra on ST . Denote by D be
the collection of sets A ∈ ST so that P (X ∈ A) = P (Y ∈ A). Also let C be the collection of sets

A = {f ∈ ST : (ft1 , ..., ftn) ∈ B}

where n runs over N, ti over T and B over Sn (the n-fold product σ-algebra of S). Now C is a
π-system and some basic measure theory implies that D is a λ-system. By definition, σ(C) = ST so
the monotone class theorem implies that ST ⊂ D. Thus we conclude that P (X ∈ A) = P (Y ∈ A)
for all sets A in the cylinder σ-algebra so the distributions of X and Y agree.

We conclude that (Xt − Yt)t and (X2t)t have the same distributions.

Remarks: The original formulation of the problem was incorrect. In general, if a discrete
time transition probability is symmetric, a continuous time transition probability need not be
symmetric. In fact, as argued in Seppäläinen’s notes

d

dt

∣∣∣∣
t=0

pt(x, y) = c(x)p(x, y),

where c is the rate function. So if pt is symmetric, then a necessary condition would be that
c(x)p(x, y) = c(y)p(y, x). In fact, using semi-group theory one can show that in our case pt is
symmetric and translation invariant if and only if q(x, y) = c(x)p(x, y) is as well (here p is the
transition probability for the discrete time chain).
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