
STOCHASTIC PARTICLE SYSTEMS - EXERCISE 1: SOLUTIONS

1. For i ∈ {1, ..., N}, let Xi be a Poisson distributed random variable with parameter λi
independent of Xj for j 6= i. Show that

∑N
i=1Xi is Poisson distributed with parameter

∑N
i=1 λi.

Solution: By induction, it’s enough to consider the N = 2 case. To characterise the distribution
of X1 + X2, it is enough to calculate the probabilities P (X1 + X2 = k) for each non-negative
integer k. Using independence and the fact that Xi is Poisson with parameter λi, we have

P (X1 +X2 = k) =
k∑

n=0

P (X1 +X2 = k,X1 = n)

=
k∑

n=0

P (X2 = k − n,X1 = n)

=
k∑

n=0

P (X1 = n)P (X2 = k − n)

=
k∑

n=0

λn1e
−λ1

n!

λk−n2 e−λ2

(k − n)!

= e−(λ1+λ2)

k∑
n=0

λn1λ
k−n
2

n!(k − n)!

=
e−(λ1+λ2)

k!

k∑
n=0

k!

n!(k − n)!
λn1λ

k−n
2

=
e−(λ1+λ2)(λ1 + λ2)k

k!
,

where in the last step we used the binomial theorem. Thus X1 + X2 is Poisson with parameter
λ1 + λ2. �

2. The setup: Consider the set Td
N = (Z/NZ)d, i.e. the discrete d-dimensional torus and let

Ω be the set of occupation configurations on Td
N , i.e. η ∈ Ω is a map η : Td

N → N = {0, 1, 2, ...}.
The interpretation is that for any x ∈ Td

N , η(x) tells you how many particles are located at x.
Consider now the probability measure µα on Ω defined by

µα(η) =
∏
x∈Td

N

αη(x)e−α

η(x)!
.

What this means is that the number of particles at each x is independent of the number of particles
at the other points and it is Poisson distributed with parameter α (which is constant in x). The
total number of particles is a random variable under this distribution (it is Poisson distributed
according to problem 1). To relate this measure to the random walk scenario, we condition on the
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event that the total number of particles is K: let SK = {η ∈ Ω :
∑

x η(x) = K} and let us define
the measure µ̃ on Ω by

µ̃(η) =
µα(η; η ∈ SK)

µα(SK)
.

The actual problems:

a) Show that µ̃ is independent of α.

b) Show that if we take K independent simple random walks {X i : i = 1, ..., K} on Td
N and let

each of their initial distributions be uniform, then µ̃ is the distribution of x 7→
∑K

i=1 1{Xi=x}

Solutions:

a) Let us begin by calculating µα(SK). As noted in the setup, problem 1 implies that as a sum
of Poisson random variables,

∑
x η(x) is a poisson random variable with parameter |Td

N |α = Ndα.
Thus

µα(SK) =
(αNd)Ke−αN

d

K!
.

The probablity of a configuration ηK ∈ SK (other configurations are given zero probability under
µ̃) is then

µα(ηK) =
∏
x∈Td

N

αηK(x)e−α

ηK(x)!
=
α
∑

x ηK(x)e−N
dα∏

x ηK(x)!
=

αKe−αN
d∏

x ηK(x)!
.

So for η ∈ Ω,

µ̃(η) =
K!

NKd
∏

x η(x)!
1(η ∈ SK),

where 1(η ∈ SK) = 1 is η ∈ SK and 0 if η /∈ SK . This is independent of α so µ̃ is independent of
α.

b) Let ν be the uniform distribution on (Td
N)K . We wish to show that for any η ∈ Ω and for all

n,

P ν

(
K∑
i=1

1{Xi
n=x} = η(x) for all x ∈ Td

N

)
= µ̃(η).

Here P ν is the distribution of the collection of random walks with initial distribution ν. Let us
begin by checking that the uniform measure on the starting points is indeed an invariant measure
for the K independent random walks. Let us write X = (X i)Ki=1. By independence, X is a Markov
chain and it’s transition probability is just given by the product of the transition probabilites of
the random walks. The simple random walk is symmetric, i.e. it’s transition probability p satisfies
p(x, y) = p(y, x). Thus X has this property as well. Symmetry and ν being uniform imply that
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∑
x0∈(Td

N )K

ν(x0)P (X1 = y|X0 = x0) =
∑

x0∈(Td
N )K

ν(y)P (X1 = y|X0 = x0)

= ν(y)
∑

x0∈(Td
N )K

P (X1 = x0|X0 = y)

= ν(y).

So ν is invariant. A simple induction shows that the distribution of Xn is ν for every n so it is
enough to consider the case n = 0. The question of the distribution of

∑K
i=1 1{Xi

n=x} now becomes
a problem in basic probability: the fact that ν is uniform implies that our problem is equivalent
to the following scenario. We have K balls and at each point in Td

N we have a slot. We place
each ball into a slot uniformly at random and ask how many balls there are in each slot. The
distribution of this problem is just the multinomial distribution with K independent trials, Nd

possible outcomes and the probability of each outcome being N−d. Explicitly, if η ∈ SK , then
plugging the data into the multinomial distribution gives

P ν

(
K∑
i=1

1{Xi
n=x} = η(x) for all x ∈ Td

N

)
=

K!∏
x η(x)!

∏
x

(N−d)η(x)

=
K!

NKd
∏

x η(x)!
.

As the probablity is zero for η /∈ SK , we see that this indeed agrees with µ̃.
�

3. Let (Y, ρ) be a metric space, B(Y ) be the σ-algebra of the Borel sets of Y andM1(Y ) the
set of probability measures on (Y,B(Y )). For A ⊂ Y and ε > 0, let

A(ε) = {x ∈ Y : ρ(x, y) < ε for some y ∈ Y }.

Define

r(µ, ν) = inf{ε > 0 : ν(F ) ≤ µ(F (ε)) + ε for every closed set F ⊂ Y }.

Show that r satisfies the triangle inequality, i.e. that for each λ, µ, ν ∈ M1(Y ), r(λ, ν) ≤
r(λ, µ) + r(µ, ν).

Solution: Let λ, µ, ν ∈ M1(Y ) and ε, ε′ > 0 so that r(λ, µ) < ε and r(µ, ν) < ε′. Thus for any
closed set F ,

ν(F ) ≤ µ(F (ε)) + ε.

and

µ(F ) ≤ λ(F (ε′)) + ε′.

We note that certainly µ(F (ε)) ≤ µ(F (ε)) (A is the closure of A) so composing the two relations
we have

3



ν(F ) ≤ λ
(
F (ε)

(ε′)
)

+ ε+ ε′.

Let x ∈ F (ε)
(ε′)

. Then there is some y ∈ F (ε) such that ρ(x, y) < ε′. As y ∈ F (ε), we may
pick some sequence of points yn ∈ F (ε) so that yn → y so we can find a point y′ ∈ F (ε) so that
ρ(x, y′) < ε′. Since y′ ∈ F (ε), we can find a point z ∈ F so that ρ(y′, z) < ε. Thus we have found
a point z ∈ F so that ρ(x, z) ≤ ρ(x, y′) + ρ(y′, z) < ε′ + ε. We conclude that x ∈ F (ε+ε′) so that
F (ε)

(ε′)
⊂ F (ε+ε′) and

ν(F ) ≤ λ(F (ε+ε′)) + ε+ ε′.

This implies that r(λ, ν) ≤ ε + ε′. Letting ε → r(λ, µ) and ε′ → r(µ, ν) we get the triangle
inequality.

Remarks: As noted in the lectures, r is indeed a metric. To see that r is symmetric, pick two
probability measures µ and ν and let α, β > 0 be such that µ(F ) ≤ ν(F (α)) + β for all closed sets
F . Now if we consider the closed set F̃ = Y \F (α), this relation implies that µ(F (α)) = 1−µ(F̃ ) ≥
1−ν(F̃ (α))−β = ν(Y \F̃ (α))−β ≥ ν(F )−β, where the last step requires checking that F ⊂ Y \F̃ (α).
We conclude that for any ε > 0, µ(F ) ≤ ν(F (ε)) + ε implies that ν(F ) ≤ µ(F (ε)) + ε. It follows
from this that r(µ, ν) = r(ν, µ). For positive definiteness, we note that r(µ, ν) = 0 and some
elementary measure theory imply that µ(F ) = ν(F ) for every closed set. One can show (see for
example Billingsley’s Convergence of probability measures) that probability measures on metric
spaces with Borel σ-algebras are regular, i.e. the measure of any Borel set can be approximated
by the measure of closed sets. From this it follows that µ(A) = ν(A) also for any Borel set and
µ = ν.

The point of this metric is that we can define weak convergence of measures in terms of it
instead of integrals of continuous functions. Recall that the sequence of measures µn is said to
converge weakly to a measure µ if ∫

fdµn →
∫
fdµ

for each bounded continuous function f : Y → R. This is equivalent to r(µn, µ) → 0. This
is a result of the Portmanteau theorem. This theorem gives a few characterisations for weak
convergence. One of the characterisations is that the sequence (µn) converges to µ weakly if
lim supn µn(F ) ≤ µ(F ) for all closed sets F . The proof is not especially hard, but requires some
measure theory. For a proof, see Billingsley’s Convergence of probability measures or Kallenberg’s
Foundations of modern probability. The benefit of being able to metrize weak convergence is that
one can then use the machinery of metric spaces and use concepts such as completeness.

4. Let (Ω,F , P ) be a probability space, G ⊂ F be a sub-σ-algebra and X : Ω→ R some random
variable. Recall that the conditional expectation of X given G defined to be any G measurable
random variable X̃ satisfying ∫

G

X̃(ω)dP (ω) =

∫
G

X(ω)dP (ω)
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for all G ∈ G. Moreover, the conditional expectation is almost surely defined uniquely by this
condition and one usually writes X̃ = E(X|G). When G is the smallest σ-algebra that makes a
mapping Y : Ω→ R measurable (i.e. G = σ(Y ) is the σ-algebra generated by Y ), one often writes
E(X|G) = E(X|Y ).

Consider now the special case that Y takes only finitely many values. Show that there is some
function f : R → R so that E(X|Y ) = f(Y ), i.e. that for every ω ∈ Ω, E(X|Y )(ω) = f(Y (ω)).
Note that f can depend on the range of Y and naturally it will depend on X, but it does not
depend on the randomness ω.

Solution: Let y be one of the values Y takes, i.e. y ∈ Y (Ω). Then intuitively one would expect
that if such a function f exists, it should satisfy f(y) = E(X|Y = y), where E(X|Y = y) can
be defined in terms of elementary probability since we are dealing with a random variable taking
only finitely many values:

E(X|Y = y) =
E(X1{Y=y})

P (Y = y)
.

This should hold for all y, so a natural candidate for E(X|Y ) would be

Z =
∑

y∈Y (Ω)

E(X1{Y=y})

P (Y = y)
1{Y=y}.

To check that indeed Z = E(X|Y ), we must check that for any set A ∈ σ(Y ), E(X1A) =
E(Z1A). One can then check that σ(Y ) is in our case a finite collection of sets which are unions
of sets of the form {ω : Y (ω) = y} for some y ∈ Y (Ω). Thus it is enough to check the property
for sets of this form. So let y ∈ Y (Ω). Since 1Y=y1Y=x = 0 if x 6= y, we have

E(Z1{Y=y}) = E

(
E(X1{Y=y})

P (Y = y)
1Y=y

)
= E(X1{Y=y}),

so E(X|Y ) = Z = f(Y ) for the function f : R→ R,

f(x) =
∑

y∈Y (Ω)

E(X1Y=y)

P (Y = y)
δx,y.

here δi,j is the Kroenecker δ: it is one when i = j and zero otherwise.
�

5. Let Sn be a simple random walk on Z with S0 = 0. Show that Xn = max{Sm : 0 ≤ m ≤ n}
is not a Markov chain.

Solution: To be a Markov chain, one must have P (Xn+1 = xn+1|Xn = xn, ..., X0 = x0) =
P (Xn+1 = xn+1|Xn = xn) for all n and for all {xn} for which P (Xn = xn, ..., X0 = x0) > 0. So let
us consider

P (X4 = 2|X3 = 1, X2 = 1, X1 = 1, X0 = 0) and P (X4 = 2|X3 = 1, X2 = 0, X1 = 0, X0 = 0).
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Since we are dealing with a simple random walk, the case (X0, X1, X2, X3) = (0, 0, 0, 1) can cor-
respond only to a single path: (S0, S1, S2, S3) = (0,−1, 0, 1). Whereas the case (X0, X1, X2, X3) =
(0, 1, 1, 1) can correspond to two paths: (S0, S1, S2, S3) = (0, 1, 0,±1). Since each path of length
n has a probability 2−n for the simple random walk, we see that

P 0(X3 = 1, X2 = 1, X1 = 1, X0 = 0) = 2−2

(this case corresponded to two paths) and

P 0(X3 = 1, X2 = 0, X1 = 0, X0 = 0) = 2−3

(this corresponded to only one path). On the other hand there is only one path for the event
(X0, X1, X2, X3, X4) = (0, 1, 1, 1, 2): (S0, S1, S2, S3, S4) = (0, 1, 0, 1, 2). Similarly for the case
(X0, X1, X2, X3, X4) = (0, 0, 0, 1, 2) there is only the path (S0, S1, S2, S3, S4) = (0,−1, 0, 1, 2).
Hence each of the events has probability 2−4 and we conclude that

P (X4 = 2|X3 = 1, X2 = 1, X1 = 1, X0 = 0) =
1

4

and

P (X4 = 2|X3 = 1, X2 = 0, X1 = 0, X0 = 0) =
1

2
.

Since these two probabilities don’t agree, they can’t both be equal to P (X4 = 2|X3 = 1) and
(Xn) can’t be a Markov chain.

�
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