STOCHASTIC PARTICLE SYSTEMS: EXERCISE 6

1. Consider a reversible measure μ for a strongly continuous contraction semigroup S(t) on C(X) with generator L. Moreover, let \tilde{L} be the L^2 extension of L considered in the lectures. Show that \tilde{L} is self adjoint.

2. Consider the setup of the previous problem. Recall that in the lectures we showed that

$$-(f, \tilde{L}g) = \frac{1}{2} \sum_{x,y} \int c(x, y, \eta) \overline{(f(\eta^{x,y}) - f(\eta))} (g(\eta^{x,y}) - g(\eta)) \mu(d\eta)$$

for cylinder functions f, g. Show that this holds for $f, g \in \mathcal{D}(\tilde{L})$ and that the series converges absolutely.

3. In addition to the setup of the previous exercises, assume that we are considering the Bernoulli case for the measure μ . Then show that if $g(\eta^{x,y}) = g(\eta)$ for all x, y for μ a.e. η , then g is μ a.e. a constant.

4. Consider a strongly continuous contraction semigroup S(t) with generator L (whose domain is $\mathcal{D}(L)$). Show that for $f \in \mathcal{D}(L^{n+1})$ (e.g. $f \in \mathcal{D}(L^2)$ if $f \in \mathcal{D}(L)$ and $\lim_{t\to 0} t^{-1}(S(t)Lf - Lf)$ exists). Then show that

$$S(t)f = \sum_{k=0}^{n} \frac{t^{k}}{k!} L^{k} f + \frac{1}{n!} \int_{0}^{t} (t-s)^{n} S(s) L^{n+1} f ds.$$