
STOCHASTIC PARTICLE SYSTEMS - EXERCISE 1

Some starting remarks:

N.B. Due to Ferrari’s course, the first exercise session is exceptionally on THURSDAY the 10th
at 12.15. The classroom is B120. Usually the exercises will be on fridays at 14.15 in the classroom
C122.

If you have any questions related to the exercises or the course in general, feel free to contact
the assistant (room B418, e-mail: christian.webb@helsinki.fi).

If you can’t attend the exercise session, you can hand in (or e-mail) your solutions to the
assistant.

When dealing with measures on countable sets, we shall usually assume that every set is mea-
surable so that it is enough to define the measure on singletons and extend it to other sets via
countable additivity.

1. For i ∈ {1, ..., N}, let Xi be a Poisson distributed random variable with parameter λi
independent of Xj for j 6= i. Show that

∑N
i=1Xi is Poisson distributed with parameter

∑N
i=1 λi.

2. The setup: Consider the set Td
N = (Z/NZ)d, i.e. the discrete d-dimensional torus and let

Ω be the set of occupation configurations on Td
N , i.e. η ∈ Ω is a map η : Td

N → N = {0, 1, 2, ...}.
The interpretation is that for any x ∈ Td

N , η(x) tells you how many particles are located at x.
Consider now the probability measure µα on Ω defined by

µα(η) =
∏
x∈Td

N

αη(x)e−α

η(x)!
.

What this means is that the number of particles at each x is independent of the number of particles
at the other points and it is Poisson distributed with parameter α (which is constant in x). The
total number of particles is now a random variable under this distribution (it is Poisson distributed
according to problem 1). To relate this measure to the random walk scenario, we condition on the
event that the total number of particles is K: let SK = {η ∈ Ω :

∑
x η(x) = K} and let us define

the measure µ̃ on Ω by

µ̃(η) =
µα(η; η ∈ SK)

µα(SK)
.

The actual problems:

a) Show that µ̃ is independent of α.

b) Show that if we take K independent simple random walks {X i : i = 1, ..., K} on Td
N and let

each of their initial distributions be uniform, then µ̃ is the distribution of x 7→
∑K

i=1 1{Xi=x}
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3. Let (Y, ρ) be a metric space, B(Y ) be the σ-algebra of the Borel sets of Y andM1(Y ) the
set of probability measures on (Y,B(Y )). For A ⊂ Y and ε > 0, let

A(ε) = {x ∈ Y : ρ(x, y) < ε for some y ∈ Y }.

Define

r(µ, ν) = inf{ε > 0 : ν(F ) ≤ µ(F (ε)) + ε for every closed set F ⊂ Y }.

Show that r satisfies the triangle inequality, i.e. that for each λ, µ, ν ∈ M1(Y ), r(λ, ν) ≤
r(λ, µ) + r(µ, ν).

4. Let (Ω,F , P ) be a probability space, G ⊂ F be a sub-σ-algebra and X : Ω→ R some random
variable. Recall that the conditional expectation of X given G defined to be any G measurable
random variable X̃ satisfying ∫

G

X̃(ω)dP (ω) =

∫
G

X(ω)dP (ω)

for all G ∈ G. Moreover, the conditional expectation is almost surely defined uniquely by this
condition and one usually writes X̃ = E(X|G). If Y : Ω→ R is a F -measurable mapping one can
consider the σ-algebra generated by Y : σ(Y ) ⊂ F . This is the smallest σ-algebra we can put on
Ω that makes Y a measurable map. In this case, one often writes E(X|σ(Y )) = E(X|Y ).

Consider now the special case that Y takes only finitely many values. Show that there is some
function f : R→ R so that E(X|Y ) = f(Y ), i.e. that for every ω ∈ Ω, E(X|Y )(ω) = f(Y (ω)).

5. Let Sn be a simple random walk on Z. Show that Xn = max{Sm : 0 ≤ m ≤ n} is not a
Markov chain.
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