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0 On tensor products of vector spaces

A crucial concept in the course is that of a tensor product of vector spaces. Here, vector spaces
can be over any fieldK.

Definition 1. Let V1,V2,W be vector spaces. A map β : V1 ×V2 →W is called bilinear if for all v1 ∈ V1
the map v2 7→ β(v1, v2) is linear V2 →W and for all v2 ∈ V2 the map v1 7→ β(v1, v2) is linear V1 →W.

Multilinear maps V1 × V2 × · · · × Vn →W are defined similarly.

The tensor product is a space which allows us to replace some bilinear (more generally
multilinear) maps by linear maps.

Let V1 and V2 be two vector spaces. A tensor product of V1 and V2 is a vector space U together
with a bilinear map φ : V1 × V2 → U such that the following universal property holds: for any
bilinear map β : V1 × V2 →W, there exists a unique linear map β̄ : U→W such that the diagram

V1 × V2
β

- W

U

β̄

-

φ
-

,

commutes.

Proving the uniqueness (up to canonical isomorphism) of an object defined by a universal
isomorphism is a standard exercise in abstract nonsense. Indeed, if we suppose U′ with a bilinear
map φ′ : V1 × V2 → U′ is another tensor product, then the universal property of U gives a linear
map φ̄′ : U→ U′ such that φ′ = φ̄′ ◦ φ. Likewise, the universal property of U′ gives a linear map
φ̄ : U′ → U such that φ = φ̄ ◦ φ′. Combining these we get

idU ◦ φ = φ = φ̄ ◦ φ′ = φ̄ ◦ φ̄′ ◦ φ.

But here are two ways of factorizing the map φ itself, so by the uniqueness requirement in the
universal property we must have equality idU = φ̄◦ φ̄′. By a similar argument we get idU′ = φ̄′ ◦ φ̄.
We conclude that φ̄ and φ̄′ are isomorphisms (and inverses of each other).

Now that we know that tensor product is unique (up to canonical isomorphism), we use the
following notations

U = V1 ⊗ V2 and

V1 × V2 3 (v1, v2)
φ
7→ v1 ⊗ v2 ∈ V1 ⊗ V2.

An explicit construction which shows that tensor products exist is left as an exercise in Problem
sheet 2. The same exercise establishes two fundamental properties of the tensor product:

• If (v(1)
i )i∈I is a linearly independent collection in V1 and (v(2)

j ) j∈J is a linearly independent

collection in V2, then the collection
(
v(1)

i ⊗ v(2)
j

)
(i, j)∈I×J

is linearly independent in V1 ⊗ V2.

• If the collection (v(1)
i )i∈I spans V1 and the collection (v(2)

j ) j∈J spans V2, then the collection(
v(1)

i ⊗ v(2)
j

)
(i, j)∈I×J

spans the tensor product V1 ⊗ V2.

It follows that if (v(1)
i )i∈I and (v(2)

j ) j∈J are bases of V1 and V2, respectively, then(
v(1)

i ⊗ v(2)
j

)
(i, j)∈I×J

1



Lecture sketch: “Hopf algebras and representations” Kalle Kytölä

is a basis of the tensor product V1 ⊗ V2. In particular if V1 and V2 are finite dimensional, then

dim (V1 ⊗ V2) = dim (V1) dim (V2).

A tensor of the form v(1)
⊗v(2) is called a simple tensor. By the second property, any t ∈ V1⊗V2

can be written as a linear combination of simple tensors

t =

n∑
α=1

v(1)
α ⊗ v(2)

α ,

for some v(1)
α ∈ V1 and v(2)

α ∈ V2, α = 1, 2, . . . ,n. Note, however, that such an expression is
by no means unique! The smallest n for which it is possible to write t as a sum of simple
tensors is called the rank of the tensor, denoted by n = rank(t). An obvious upper bound
is rank(t) ≤ dim (V1)dim (V2) (although this is clearly useless whenever V1 or V2 is infinite
dimensional). The following useful observation shows that one can do much better in general.

Lemma 1. Suppose that

t =

n∑
α=1

v(1)
α ⊗ v(2)

α ,

where n = rank(t). Then both (v(1)
α )n

α=1 and (v(2)
α )n

α=1 are linearly independent collections.

Proof. Suppose, by contraposition, that there is a linear relation

n∑
α=1

cαv(1)
α = 0,

where not all the coefficients are zero. We may assume that cn = 1. Thus v(1)
n = −

∑n−1
α=1 cαv(1)

α and
using bilinearity we simplify t as

t =

n−1∑
α=1

v(1)
α ⊗ v(2)

α + v(1)
n ⊗ v(2)

n =

n−1∑
α=1

v(1)
α ⊗ v(2)

α −

n−1∑
α=1

cα v(1)
α ⊗ v(2)

n =

n−1∑
α=1

v(1)
α ⊗

(
v(1)
α − cαv(2)

n

)
which contradicts minimality of n = rank(t). The statement about (v(2)

α ) is proven similarly. �

As a consequence we get a better upper bound

rank(t) ≤ min {dim (V1),dim (V2)} .

Taking tensor products with the one-dimensional vector space K is in effect useless: for any
vector space V we can canonically identify

V ⊗K � V and K ⊗ V � V
v ⊗ λ 7→ λv λ ⊗ v 7→ λv.

By the obvious correspondence of bilinear maps V1 × V2 → W and V2 × V1 → W, one also
always gets a canonical identification

V1 ⊗ V2 � V2 ⊗ V1.

Almost equally obvious correspondences give the canonical identifications

(V1 ⊗ V2) ⊗ V3 � V1 ⊗ (V2 ⊗ V3)

etc., which allow us to omit parentheses in multiple tensor products.
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A slightly more interesting property than the above obvious identifications is the embedding

V2 ⊗ V∗1 ↪→ Hom(V1,V2)

which is obtained by associating to v2 ⊗ ϕ the linear map

v1 7→ ϕ(v1) v2

(and extending linearly from the simple tensors to all tensors). In the exercises it is shown that
when both V1 and V2 are finite dimensional, this gives a linear isomorphism V2⊗V∗1 � Hom(V1,V2),
and the rank of a tensor becomes the rank of a matrix of the corresponding linear map.

When
f : V1 →W1 and g : V2 →W2

are linear maps, then there is a linear map

f ⊗ g : V1 ⊗ V2 →W1 ⊗W2

such that
( f ⊗ g)(v1 ⊗ v2) = f (v1) ⊗ g(v2) for all v1 ∈ V1, v2 ∈ V2.

This clearly depends bilinearly on ( f , g), so we get a canonical map

Hom(V1,W1) ⊗Hom(V2,W2) ↪→ Hom(V1 ⊗ V2,W1 ⊗W2),

which is easily seen to be injective. When all the vector spaces V1,W1,V2,W2 are finite dimensional,
then the dimension of either side above is given by

dim (V1) dim (V2) dim (W1) dim (W2),

so in this case the canonical map is an isomorphism

Hom(V1,W1) ⊗Hom(V2,W2) � Hom(V1 ⊗ V1,W1 ⊗W2).

As a particular case of the above, interpreting the dual of a vector space V as V∗ = Hom(V,K)
and using K ⊗ K � K, we see that the tensor product of duals sits inside the dual of the tensor
product. Explicitly, if V1 and V2 are vector spaces and ϕ1 ∈ V∗1, ϕ2 ∈ V∗2, then

v1 ⊗ v2 7→ ϕ1(v1)ϕ2(v2)

defines an element of the dual of V1 ⊗ V2. To summarize, we have an embedding

V∗1 ⊗ V∗2 ↪→ (V1 ⊗ V2)∗.

If V1 and V2 are finite dimensional this gives the isomorphism

V∗1 ⊗ V∗2 � (V1 ⊗ V2)∗,

and later we will see that the fact that in infinite dimensional case we can only go to one direction,
is essentially responsible for the asymmetry in the dualities between algebras and coalgebras.
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