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2 Representations of finite groups

As the very first thing, we take a brief look at the classical topic of representations of finite groups.
Many things are easier than later in the course when we discuss representations of “quantum
groups”. The most important result is that all finite dimensional representations are direct sums
of irreducible representations, of which there are only finitely many.

Reminders about groups and related concepts

Definition 1. A group is a pair (G, ◦), where G is a set and ◦ is a binary operation on G

◦ : G × G→ G (g, h) 7→ g ◦ h

such that the following hold

“Associativity”: g1 ◦ (g2 ◦ g3) = (g1 ◦ g2) ◦ g3 for all g1, g2, g3 ∈ G

“Neutral element”: there exists an element e ∈ G s.t. for all g ∈ G we have g ◦ e = g = e ◦ g

“Inverse”: for any g ∈ G, there exists an element g−1
∈ G such that g ◦ g−1 = e = g−1

◦ g

A group (G, ◦) is said to be finite if its order |G| (that is the cardinality of G) is finite.

We usually omit the notation for the binary operation ◦ and write simply gh := g ◦ h. For
abelian groups we often use the additive symbol +.

Also, we usually abbreviate and write only G for the group (G, ◦).

Example 1. Let X be a set. Then S(X) :=
{
σ : X→ X bijective

}
with composition of functions is a group,

called the symmetric group of X.

In the case X = {1, 2, 3, . . . ,n} we denote the symmetric group by Sn.

Example 2. Let V be a vector space and GL(V) = Aut(V) =
{
A : V → V linear bijection

}
with composition

of functions as the binary operation. Then GL(V) is a group, called the general linear group of V (or the
automorphism group of V). When V is finite dimensional, dim (V) = n, and a basis of V has been chosen,
then GL(V) can be identified with the group of n × n matrices having nonzero determinant, with matrix
product as the group operation.

LetK be the ground field and V = Kn the standard n-dimensional vector space. In this case we denote
GL(V) = GLn(K).

Example 3. The group D4 of symmetries of a square, or the dihedral group of order 8, is the group with
two generators

r “rotation by π/2” m “reflection”

and relations
r4 = e m2 = e rmrm = e.

Definition 2. Let (G1, ◦1) and (G2, ◦2) be groups. A mapping f : G1 → G2 is said to be a (group)
homomorphism if for all g, h ∈ G1

f (g ◦1 h) = f (g) ◦2 f (h).

Example 4. The determinant function A 7→ det(A) from the matrix group GLn(C) to the multiplicative
group C∗ of non-zero complex numbers, is a homomorphism since det(A B) = det(A) det(B).

We will assume that the participants are familiar with the notions of subgroup, normal
subgroup, quotient group, canonical projection, kernel, isomorphism etc.

One of the most fundamental recurrent principles in mathematics is the isomorphism theorem.
We recall that in the case of groups it states the following.
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Theorem 1. Let G and H be groups and f : G→ H a homomorphism. Then

1◦) Im ( f ) := f (G) ⊂ H is a subgroup.

2◦) Ker ( f ) := f−1({eH}) ⊂ G is a normal subgroup.

3◦) The quotient group G/Ker ( f ) is isomorphic to Im ( f ).

More precisely, there exists an injective homomorphism f̄ : G/Ker ( f ) → Im ( f ) such that the following
diagram commutes

G
f

- H

G/Ker ( f )

f̄

-

π
-

,

where π : G→ G/Ker ( f ) is the canonical projection.

The reader has surely encountered isomorphism theorems for several algebraic structures
already — the following table summarizes the corresponding concepts in a few familiar cases

Structure Morphism f Image Im ( f ) Kernel Ker ( f )
group group homomorphism subgroup normal subgroup

vector space linear map vector subspace vector subspace
ring ring homomorphism subring ideal
...

...
...

...

We will encounter isomorphism theorems for yet many other algebraic structures during this
course: representations (modules), algebras, coalgebras, bialgebras, Hopf algebras, . . . . The idea
is always the same, and the proofs only vary slightly, so we will probably not give full details in
all cases.

A word of warning: since kernels, images, quotients etc. of different algebraic structures are
philosophically so similar, we use the same notation for all, and assume that a reader sees that
Ker (ρ(g)) usually means the kernel of a linear map ρ(g) (a vector subspace), whereas Ker (ρ)
typically means the kernel of a group homomorphism ρ (a normal subgroup) and so on.

Representations: Definition and first examples

Definition 3. Let G be a group and V a vector space. A representation of G in V is a group homomorphism
G→ GL(V).

Suppose ρ : G → GL(V) is a representation. For any g ∈ G, the image ρ(g) is a linear map
V → V. When the representation ρ is clear from context (and maybe also when it is not), we denote
the images of vectors by this linear map simply by g.v := ρ(g) v ∈ V, for v ∈ V. With this notation
the requirement that ρ is a homomorphism reads (g h).v = g.(h.v). It is convenient to interpret this
as a left multiplication of vectors v ∈ V by elements g of the group G. Thus interpreted, we say
that V is a (left) G-module.

Example 5. Let V be a vector space and set ρ(g) = idV for all g ∈ G. This is called the trivial representation
of G in V. If no other vector space is clear from the context, the trivial representation means the trivial
representation in the one dimensional vector space V = K.
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Example 6. The symmetric group Sn for n ≥ 2 has another one dimensional representation called the
alternating representation. This is the representation given by ρ(σ) = sign(σ) idK, where sign(σ) is
minus one when the permutation σ is the product of odd number of transpositions, and plus one when σ is
the product of even number of transpositions.

Example 7. Let D4 be the dihedral group of order 8, with generators r,m and relations r4 = e, m2 = e,
rmrm = e. Define the matrices

R =

[
0 −1
1 0

]
and M =

[
−1 0
0 1

]
.

Since R4 = I, M2 = I, RMRM = I, there exists a homomorphism ρ : D4 → GL2(R) such that ρ(r) = R,
ρ(m) = M. Such a homomorphism is unique since we have given the values of it on generators r,m of D4.
If we think of the square in the plane R2 with vertices A = (1, 0), B = (0, 1), C = (−1, 0), D = (0,−1),
then the linear maps ρ(g), g ∈ D4, are precisely the eight isometries of the plane which preserve the square
ABCD. Thus it is very natural to represent the group D4 in a two dimensional vector space!

A representation ρ is said to be faithful if it is injective, i.e. if Ker (ρ) = {e}. The representation
of the symmetry group of the square in the last example is faithful, it could be taken as a defining
representation of D4.

When the ground field is C, we might want to write the linear maps ρ(g) : V → V in their
Jordan canonical form. But we observe immediately that the situation is as good as it could get:

Lemma 2. Let G be a finite group, V a finite dimensional (complex) vector space, and ρ a representation
of G in V. Then, for any g ∈ G, the linear map ρ(g) : V → V is diagonalizable.

Proof. Observe that gn = e for some positive integer n (for example the order of the element g or
the order of the group G). Thus we have ρ(g)n = ρ(gn) = ρ(e) = idV. This says that the minimal
polynomial of ρ(g) divides xn

− 1, which only has roots of multiplicity one. Therefore the Jordan
normal form of ρ(g) can only have blocks of size one. �

We still continue with an example (or definition) of representation that will serve as useful
tool later.

Example 8. Let ρ1, ρ2 be two representations of a group G in vector spaces V1,V2, respectively. Then the
space of linear maps between the two representations

Hom(V1,V2) = {T : V1 → V2 linear}

becomes a representation by setting

g.T = = ρ2(g) ◦ T ◦ ρ1(g−1)

for all T ∈ Hom(V1,V2), g ∈ G. As usual, we often omit the explicit notation for the representations ρ1, ρ2,
and write simply

(g.T)(v) = g.
(
T(g−1.v)

)
for any v ∈ V1.

To check that this indeed defines a representation, we compute(
g1.(g2.T)

)
(v) = g1.

(
(g2.T)(g−1

1 .v)
)

= g1.g2.
(
T(g−1

2 .g
−1
1 .v)

)
= g1g2.

(
T
(
(g1g2)−1.v

))
=

(
(g1g2).T

)
(v).

Definition 4. Let G be a group and V1,V2 two G-modules (=representations). A linear map T : V1 → V2
is said to be a G-module map (sometimes also called a G-linear map) if T(g.v) = g.T(v) for all g ∈ G, v ∈ V.

Note that T ∈ Hom(V1,V2) is a G-module map if and only if g.T = T for all g ∈ G, when we
use the representation of Example 8 on Hom(V1,V2). We denote by HomG(V1,V2) ⊂ Hom(V1,V2)
the space of G-module maps from V1 to V2.
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Subrepresentations, irreducibility and complete reducibility

Definition 5. Let ρ be a representation of G in V. If V′ ⊂ V is a subspace and if ρ(g) V′ ⊂ V′ for all g ∈ G
(we say that V′ is an invariant subspace), then taking the restriction to the invariant subspace, g 7→ ρ(g)|V′
defines a representation of G in V′ called a subrepresentation of ρ.

We also call V′ a submodule of the G-module V.

The subspaces {0} ⊂ V and V ⊂ V are always submodules.

Example 9. Let T : V1 → V2 be a G-module map. The image Im (T) = T(V1) ⊂ V2 is a submodule, since
a general vector of the image can be written as w = T(v), and g.w = g.T(v) = T(g.v) ∈ Im (T). The kernel
Ker (T) = T−1({0}) ⊂ V1 is a submodule, too, since if T(v) = 0 then T(g.v) = g.T(v) = g.0 = 0.

Example 10. When we consider Hom(V1,V2) as a representation as in Example 8, the subspace HomG(V1,V2) ⊂
Hom(V1,V2) of G-module maps is a subrepresentation, which, by the remark after Definition 4, is a trivial
representation in the sense of Example 5.

Definition 6. Let ρ1 : G → GL(V1) and ρ2 : G → GL(V2) be representations of G in vector spaces V1
and V2, respectively. Let V = V1 ⊕ V2 be the direct sum vector space. The representation ρ : G→ GL(V)
given by

ρ(g)(v1 + v2) = ρ1(g)v1 + ρ2(g)v2 when v1 ∈ V1 ⊂ V, v2 ∈ V2 ⊂ V

is called the direct sum representation of ρ1 and ρ2.

Both V1 and V2 are submodules of V1 ⊕ V2.

A key property of representations of finite groups is that any invariant subspace has a com-
plementary invariant subspace in the following sense.

Proposition 3. Let G be a finite group. If V′ is a submodule of a G-module V, then there is a submodule
V′′ ⊂ V such that V = V′ ⊕ V′′ as a G-module.

Proof. First choose any complementary vector subspace U for V′, that is U ⊂ V′ such that V = V′⊕U
as a vector space. Let π′ : V → V′ be the canonical projection corresponding to this direct sum,
that is

π′(v′ + u) = v′ when v′ ∈ V′, u ∈ U.

Define
π(v) =

1
|G|

∑
g∈G

g.π′(g−1.v).

Observe that π|V′ = idV′ and Im (π) ⊂ V′, that is π is a projection from V to V′. If we set
V′′ = Ker (π), then at least V = V′ ⊕V′′ as a vector space. To show that V′′ is a subrepresentation,
it suffices to show that π is a G-module map. This is checked by doing the change of summation
variable g̃ = h−1g in the following

π(h.v) =
1
|G|

∑
g∈G

g.π′(g−1.h.v) =
1
|G|

∑
g∈G

g.π′
(
(h−1g)−1.v

)
=

1
|G|

∑
g̃∈G

hg̃.π′
(
g̃−1.v

)
= h.π(v).

We conclude that V′′ = Ker (π) ⊂ V is a subrepresentation and thus V = V′⊕V′′ as a representation.
�

Definition 7. Let ρ : G → GL(V) be a representation. If there are no other subrepresentations but those
corresponding to {0} and V, then we say that ρ is an irreducible representation, or that V is a simple
G-module.

Proposition 3, with an induction on dimension of the G-module V, gives the fundamental
result about representations of finite groups called complete reducibility, as stated in the following.
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Corollary 4. Let G be a finite group and V a finite dimensional G-module. Then, as representations, we
have

V = V1 ⊕ V2 ⊕ · · · ⊕ Vn,

where each subrepresentation V j ⊂ V, j = 1, 2, . . . ,n, is an irreducible representation of G.

We also mention the basic result which says that there is not much freedom in constructing
G-module maps between irreducible representations.

Lemma 5 (Schur’s Lemma). If V and W are irreducible representations of a group G, and T : V →W is
a G-module map, then

(i) either T = 0 or T is an isomorphism

(ii) if V = W, then T = λ idV for some λ ∈ C.

Proof. If Ker (T) , {0}, then by irreducibility of V we have Ker (T) = V and therefore T = 0. If
Ker (T) = {0}, then T is injective and by irreducibility of W we have Im (T) = W, so T is also
surjective. This proves (i). To prove (ii), pick any eigenvalue λ of T (here we need the ground
field to be algebraically complete, for example the field C of complex numbers). Now consider
the G-module map T − λidV, which has a nontrivial kernel. The kernel must be the whole space
by irreducibility, so T − λ idV = 0. �

Characters

In the rest of this section G is a finite group of order |G| and all representations are assumed to be
finite dimensional.

We have already seen the fundamental result of complete reducibility: any representation
of G is a direct sum of irreducible representations. It might nevertheless not be clear yet how
to concretely work with the representations. We now introduce a very powerful tool for the
representation theory of finite groups: the character theory.

Definition 8. For ρ : G → GL(V) a representation, the character of the representation is the function
χV : G→ C given by

χV(g) = Tr(ρ(g)).

Observe that we have
χV(e) = dim (V)

and for two group elements that are conjugates, g2 = hg1h−1, we have

χV(g2) = Tr(ρ(g2)) = Tr
(
ρ(h)ρ(g1)ρ(h)−1

)
= Tr(ρ(g1)) = χV(g1).

Thus the value of a character is constant on each conjugacy class of G (such functions G→ C are
called class functions).

Example 11. We have seen three (irreducible) representations of the group S3: the trivial representation
U and the alternating representation U′, both one dimensional, and the two-dimensional representation
V in Problem sheet 1: Exercise 3. The conjugacy classes of symmetric groups are given by the cycle
decompositions of a permutation, in particular for S3 the conjugacy classes are

identity : {e}
transpositions : {(12), (13), (23)}

3-cycles : {(123), (132)} .
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We can explicitly compute the trace of for example the transposition (12) and the three cycle (123) to get the
characters of these representations

χ(e) χ((12)) χ((123))
U 1 1 1
U′ 1 −1 1
V 2 0 −1

.

Recall that we have seen how to make the dual V∗ a representation (cf. Problem sheet 1:
Exercise 2), and how to make direct sum V1⊕V2 a representation. We can also build representations
by taking tensor products of representations.

Definition 9. Let ρ1 : G → GL(V1) and ρ2 : G → GL(V2) be two representations of G. We make the
tensor product space V1 ⊗ V2 a representation by setting for simple tensors

ρ(g) (v1 ⊗ v2) = (ρ1(g)v1) ⊗ (ρ2(g)v2)

and extending the definition linearly to the whole of V1 ⊗ V2. Clearly for simple tensors we have

ρ(h)ρ(g) (v1 ⊗ v2) =
(
ρ1(h)ρ1(g)v1

)
⊗

(
ρ2(h)ρ2(g)v2

)
=

(
ρ1(hg)v1

)
⊗

(
ρ2(hg)v2

)
= ρ(hg) (v1 ⊗ v2)

and since both sides are linear, we have ρ(h)ρ(g) t = ρ(hg) t for all t ∈ V1⊗V2, so that ρ : G→ GL(V1⊗V2)
is indeed a representation.

Let us now see how these operations affect characters.

Proposition 6. Let V,V1,V2 be representations of G. Then we have

(i) χV∗ (g) = χV(g)

(ii) χV1⊕V2 (g) = χV1 (g) + χV2 (g)

(iii) χV1⊗V2 (g) = χV1 (g)χV2 (g) .

Proof. Part (i) was done in Problem sheet 1: Exercise 2. For the other two, recall first that if
ρ : G → GL(V) is a representation, then ρ(g) is diagonalizable by Lemma 2. Therefore there are
n = dim (V) linearly independent eigenvectors with eigenvalues λ1, λ2, . . . , λn, and the trace is the
sum of these χV(g) =

∑n
j=1 λ j. Consider the representations ρ1 : G → GL(V1), ρ2 : G → GL(V2).

For g ∈ G, take bases of eigenvectors of ρ1(g) and ρ2(g) for V1 and V2, respectively: if n1 = dim (V1)
and n2 = dim (V2) let v(1)

α , α = 1, 2, . . . ,n1, be eigenvectors of ρ1(g) with eigenvalues λ(1)
α , and v(2)

β ,

β = 1, 2, . . . ,n2, eigenvectors of ρ2(g) with eigenvalues λ(2)
β . To prove (ii) it suffices to note that

v(1)
α ∈ V1 ⊂ V1 ⊕ V2 and v(2)

α ∈ V2 ⊂ V1 ⊕ V2 are the n1 + n2 = dim (V1 ⊕ V2) linearly independent
eigenvectors for the direct sum representation, and the eigenvalues are λ(1)

α and λ(2)
β . To prove (iii)

note that the vectors v(1)
α ⊗ v(2)

β are the n1n2 = dim (V1 ⊗ V2) linearly independent eigenvectors of

V1 ⊗ V2, and the eigenvalues are the products λ(1)
α λ

(2)
β , since

g.(v(1)
α ⊗ v(2)

β ) =
(
ρ1(g).v(1)

α

)
⊗

(
ρ2(g).v(2)

β

)
= (λ(1)

α v(1)
α ) ⊗ (λ(2)

β v(2)
β ) = λ(1)

α λ
(2)
β (v(1)

α ⊗ v(2)
β ).

Therefore the character of the tensor product reads

χV1⊗V2 (g) =
∑
α,β

λ(1)
α λ(2)

β =
( n1∑
α=1

λ(1)
α

) ( n2∑
β=1

λ(2)
β

)
= χV1 (g) χV2 (g).

�
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For V a representation of G, set

VG =
{
v ∈ V

∣∣∣ g.v = v ∀g ∈ G
}
.

Then VG
⊂ V is a subrepresentation, which is a trivial representation in the sense of Example 5.

We define a linear map ϕ on V by

ϕ(v) =
1
|G|

∑
g∈G

g.v v ∈ V.

Proposition 7. The map ϕ is a projection V → VG.

Proof. Clearly if v ∈ VG then ϕ(v) = v, so we have ϕ|VG = idVG . For any h ∈ G and v ∈ V, use the
change of variables g̃ = hg to compute

h.ϕ(v) =
1
|G|

∑
g∈G

hg.v =
1
|G|

∑
g̃∈G

g̃.v = ϕ(v),

so we have Im (ϕ) ⊂ VG. �

Thus we have an explicitly defined projection to the trivial part of any representation, and
we have in particular

dim (VG) = Tr(ϕ) =
1
|G|

∑
g∈G

χV(g).

Now suppose that V and W are two representations of G and consider the representation
Hom(V,W). We have seen in Problem sheet 2: Exercise 2 that Hom(V,W) � W⊗V∗ as a representation.
In particular, we know how to compute the character

χHom(V,W)(g) = χW⊗V∗ (g) = χW(g)χV∗ (g) = χV(g)χW(g).

We’ve also seen that the trivial part of this representation consists of the G-module maps between
V and W,

Hom(V,W)G = HomG(V,W),

and we get the following almost innocent looking consequence

dim
(
HomG(V,W)

)
= Tr(ϕ) =

1
|G|

∑
g∈G

χV(g)χW(g).

Suppose now that V and W are irreducible. Then Schur’s lemma says that when V and W are
not isomorphic, there are no nonzero G-module maps V →W, whereas the G-module maps from
an irreducible representation to itself are scalar multiples of the identity, i.e.

dim
(
HomG(V,W)

)
=

{
1 if V � W
0 otherwise .

We have in fact obtained a very powerful result.

Theorem 8. The following statements hold for irreducible representations of a finite group G.

(i) If V and W are irreducible representations, then

1
|G|

∑
g∈G

χV(g)χW(g) =

{
1 if V � W
0 otherwise .
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(ii) Characters of (non-isomorphic) irreducible representations are linearly independent.

(iii) The number of (isomorphism classes of) irreducible representations is at most the number of conjugacy
classes of G.

Proof. The statement (i) was proved above. We can interpret it as saying that the characters of
irreducible representations are orthonormal with respect to the natural inner product (ψ,φ) =
1
|G|

∑
g∈G ψ(g)φ(g) on the space CG of C-valued functions on G. The linear independence, (ii),

follows at once. Since a character has constant value on each conjugacy class, an obvious upper
bound on the number of linearly independent characters gives (iii). �

We proceed with further consequences.

Corollary 9. Let Wα, α = 1, 2, . . . , k, be the distinct irreducible representations of G. Let V be any
representation, and let mα be the multiplicity of Wα when we use complete reducibility:

V =
⊕
α

mα Wα

Then we have

(i) The character χV determines V (up to isomorphism).

(ii) The multiplicities are given by

mα =
1
|G|

∑
g∈G

χWα (g)χV(g).

(iii) We have
1
|G|

∑
g∈G

|χV(g)|2 =
∑
α

m2
α.

(iv) The representation V is irreducible if and only if

1
|G|

∑
g∈G

|χV(g)|2 = 1.

Proof. The character of V is by Proposition 6 given by χV(g) =
∑
α mα χWα (g). Now (ii) is obtained

by taking the orthogonal projection to χWα . In particular we obtain the (anticipated) fact that in
complete reducibility the direct sum decomposition is unique up to permutation of the irreducible
summands. We also see (i) immediately, and (iii) follows from the same formula combined with
χV(g)χV(g) = |χV(g)|2. Then (iv) is obvious in view of (iii). �

We get some more nice consequences when we consider the representation given in the
following examples.

Example 12. Consider the vector space CG with basis {eg | g ∈ G}. For any g, h ∈ G, set

h.eg = ehg

and extend linearly. This defines a |G|-dimensional representation called the regular representation of G.
We denote the regular representation here by C[G] because later we will put an algebra structure on this
vector space to obtain the group algebra of G, and then this notation is standard.

Example 13. More generally, following the same idea, if the group G acts on a set X, then we can define a
representation on the vector space CX with basis {ex|x ∈ X} by a linear extension of g.ex = e(g.x). These kind
of represetations are called permutation representations.
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It is obvious, when we write matrices in the basis (ex)x∈X and compute traces, that χCX (g) is
the number of elements x ∈ X which are fixed by the action of g. In particular the character of the
regular representation is

χC[G](g) =

{
|G| if g = e
0 if g , e .

We can then use Corollary 9 (ii) and compute, for any irreducible Wα,

1
|G|

∑
g∈G

χWα (g)χC[G](g) =
1
|G|

χWα (e) |G| = dim (Wα).

Thus any irreducible representation appears in the regular representation by multiplicity given
by its dimension

C[G] =
⊕
α

mα Wα where mα = dim (Wα).

Considering in particular the dimensions of the two sides, and recalling dim (C[G]) = |G|, we get
the following formula ∑

α

dim (Wα)2 = |G|.

Example 14. The above formula can give useful and nontrivial information. Consider for example the
group S4, whose order is |S4| = 4! = 24. We have seen the trivial and alternating representations of S4,
and since there are five conjugacy classes (identity, transposition, two disjoint transpositions, three-cycle,
four-cycle), we know that there are at most three other irreducible representations S4. From the above
formula we see that the sum of squares of their dimensions is |S4| − 12

− 12 = 22. Since 22 is not a square,
there must remain more than one irreducible, and since 22 is also not a sum of two squares, there must in
fact be three other irreducibles. The only way to write 22 as a sum of three squares is 22 = 22 + 32 + 32, so
we see that the three remaining irreducible representations have dimensions 2, 3, 3.
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