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4 On quantum groups

A building block of quantum groups

This section discusses aHopf algebraHq, which is an important building block of quantum groups
— a kind of “quantum” version of a Borel subalgebra of the Lie algebra sl2.

q-integers, q-factorials and q-binomial coefficients

For n ∈N and 0 ≤ k ≤ n, define the following rational (in fact polynomial) functions of q:

the q-integer ~n� = 1 + q + q2 + · · · + qn−1 =
1 − qn

1 − q
(4.1)

the q-factorial ~n�! = ~1� ~2� · · · ~n − 1� ~n� (4.2)

the q-binomial coefficient

�

n
k

�

=
~n�!

~k�! ~n − k�!
, (4.3)

and when q ∈ C \ {0}, denote the values of these functions at q by

~n�q, ~n�q!,

�

n
k

�

q

,

respectively.

Remark 1. When q = 1, one recovers the usual integers, factorials and binomial coefficients.

As simple special cases one has

~0� = 0, ~1� = 1 and ~0�! = ~1�! = 1

and for all n ∈N
�

n
0

�

=

�

n
n

�

= 1 and

�

n
1

�

=

�

n
n − 1

�

= ~n�.

When q is a root of unity, degeneracies arise. Let p be the smallest positive integer such that qp = 1.
Then we have

~mp�q = 0 ∀m ∈N and ~n�q! = 0 ∀n ≥ p.

The values of the q-binomial coefficients at roots of unity are described as follows: if the quotients and
remainders modulo p of n and k are n = pD(n) + R(n) and k = pD(k) + R(k) with D(n),D(k) ∈ N and
R(n),R(k) ∈ {

0, 1, 2, . . . , p − 1
}
, then

�

n
k

�

q

=

(

D(n)

D(k)

)

×
�

R(n)
R(k)

�

q

.

In particular

�

n
k

�

q

is non-zero only if the remainders modulo p of n and k satisfy R(k) ≤ R(n).

The Hopf algebra Hq

Let q ∈ C \ {0} and let Hq be the algebra with three generators a, a′, b and relations

a a′ = a′ a = 1 , a b = q b a.

Because of the first relation we can write a′ = a−1 in Hq. The collection (bm an)m∈N,n∈Z is a vector
space basis for Hq. The product in this basis is easily seen to be

µ(bm1an1 ⊗ bm2an2) = qn1m2 bm1+m2an1+n2 .

1



Lecture sketch: “Hopf algebras and representations” Kalle Kytölä

Exercise 1. Show that there is a unique Hopf algebra structure on Hq such that the coproducts of a and b
are given by

∆(a) = a ⊗ a and ∆(b) = a ⊗ b + b ⊗ 1.

Show also that the following formulas hold in this Hopf algebra

∆(bman) =

m∑

k=0

�

m
k

�

q

bkam−k+n ⊗ bm−kan (4.4)

ǫ(bman) = δm,0 (4.5)

γ(bman) = (−1)m q−m(m+1)/2−nm bm a−n−m. (4.6)

We will assume from here on that q , 1. Then the Hopf algebra Hq is clearly neither
commutative nor cocommutative. In fact, Hq also serves as an example of a Hopf algebra where
the antipode is not involutive: we have for example

γ(γ(b)) = −q−1 γ(ba−1) = q−1 b , b.

About the restricted dual of Hq

Let us now consider the restricted dualH◦q . By Corollary 13 (Section 3), it is spanned by the repre-
sentative forms of finite dimensionalHq-modules, so let us start concretely from low-dimensional
modules.

Exercise 2. Let A be an algebra and consider its restricted dual A◦. Show that for a linear map f : A→ C
the following are equivalent:

- The function f is a homomorphism of algebras.
(Remark: This has the interpretation that f is a one-dimensional representation of A.)

- The element f is grouplike in the coalgebra A◦.

One-dimensional representations of Hq

Suppose V = C v is a one-dimensional Hq module with basis vector v. We have

a.v = z v

for some complex number z, which must be non-zero since a ∈ Hq is invertible. Note that

a.(b.v) = q b.(a.v) = qz b.v,

which means that b.v is an eigenvector of a with a different eigenvalue, qz , z. Eigenvectors
corresponding to different eigenvalues would be linearly independent, so in the one dimensional
module we must have b.v = 0. It is now straighforward to compute the action of bman,

bman.v = δm,0 z
n v,

from which we can read the only representative form λ1,1 ∈ H◦q in this case. We define gz ∈ H◦q as
the representative form

〈gz, bman〉 = δm,0 z
n.

By the exercise above, the one-dimensional representations correspond to grouplike elements of
H◦q , and indeed it is easy to verify by direct computation or as a special case of Equation (3.4) that

µ∗(gz) = gz ⊗ gz.
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To compute the products of two elements of this type, we use Equation (4.4):

〈∆∗(gz ⊗ gw), b
man〉 = 〈gz ⊗ gw,∆(b

man)〉 =
m∑

k=0

�

m
k

�

q

〈gz, bkam−k+n〉 〈gw, bm−kan〉

=

m∑

k=0

�

m
k

�

q

δk,0 δm−k,0 z
m−k+n wn

= δm,0 (zw)
n
= 〈gzw, bman〉,

that is, the product in H◦q of these elements reads

∆
∗(gz ⊗ gw) = gzw.

We see that the linear span of (gz)z∈C\{0} in H◦q is isomorphic to the group algebra of the
multiplicative group of non-zero complex numbers C[C∗].

We also remark that there is the trivial one-dimensional representation, explicitly determined
by Equation (4.5),

bman.v = ǫ(bman) v = δm,0 v = 〈g1, bman〉 v,
and the corresponding grouplike element of the restricted dual is the unit of the restricted dual
Hopf algebra, g1 = ǫ

∗(1) = 1H◦q .

Two-dimensional representations of Hq

LetV be a two-dimensional Hq-module, and choose a basis v1, v2 in which a is in Jordan canonical
form. Let z1, z2 ∈ C\{0} be the (different or equal) eigenvalues of a. Recall that if v is an eigenvector
of a of eigenvalue z, then either b.v = 0 or b.v is a nonzero eigenvector of awith eigenvalue qz. Let
us now suppose that q , −1 (and as before we continue to assume q , 0 and q , 1) so that in the
latter case b has to annihilate at least one eigenvectors of a and let us without loss of generality
suppose that

a.v1 = z1 v1 and b.v1 = 0.

There are a few possible cases. Either a is diagonalizable or there is a size two Jordan block of a (in
the latter case the eigenvalues of amust coincide), and either b.v2 = 0 or b.v2 is a nonzero multiple
of v1 (in which case we must have z1 = qz2 , z2 by the above argument).

Consider first the case when a is diagonalizable and b.v2 = 0. Then a.v2 = z2 v2 and we easily
compute

bman.v1 = δm,0 z
n
1 v1 and bman.v2 = δm,0 z

n
2 v2.

We read that the representative forms are of the same type as before,

λ1,1 = gz1 , λ2,1 = 0, λ1,2 = 0, λ2,2 = gz2 .

Consider then the case when a is not diagonalizable. We may suppose a.v1 = z1 v1 and
a.v2 = z1 v2 + v1. We observe like before that

(a − z1)
2.v2 = 0 ⇒ (a − qz1)

2b.v2 = b(qa − qz1)
2.v2 = 0

which means that b.v2 would have a generalized eigenvalue qz1, which is impossible, so b.v2 = 0,
too. It is now easy to compute the action of the whole algebra on the module,

bman.v1 = δm,0 z
n
1 v1 and bman.v2 = δm,0

(

zn1 v2 + n zn−11 v1
)

.

Here we find one new representative form, we define g′z ∈ H◦q , for z ∈ C \ {0}, by

〈g′z, bman〉 = δm,0 n zn−1.
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Then the representative forms are

λ1,1 = gz1 , λ2,1 = 0, λ1,2 = g′z1 , λ2,2 = gz1 .

The coproduct in H◦q of the newly found element can be read from Equation (3.4) with the result

µ∗(g′z) = gz ⊗ g′z + g′z ⊗ gz.

This could of course also be verified by the following direct calculation

〈µ∗(g′z), bm1an1 ⊗ bm2an2〉 = 〈g′z, bm1an1bm2an2〉 = qn1m2 〈g′z, bm1+m2an1+n2〉
= qn1m2 δm1+m2,0 (n1 + n2) z

n1+n2−1

= q0 δm1,0 δm2,0

(

n1 z
n1−1 zn2 + zn1 n2 z

n2−1
)

= 〈g′z ⊗ gz + gz ⊗ g′z, b
m1an1 ⊗ bm2an2〉.

Consider finally the case when a is diagonalizable and b.v2 is a nonzero multiple of v1. As
was shown earlier, this requires z1 = qz2, and we may assume a normalization of the basis vectors
such that

a.v1 = qz2 v1, a.v2 = z2 v2, b.v1 = 0, b.v2 = v1.

We then have

bman.v1 = δm,0 (qz2)
n v1 and bman.v2 = δm,0 z

n
2 v2 + δm,1 z

n
2 v1,

so we find one new representative form again. Defining h(1)z ∈ H◦q , for z ∈ C \ {0}, by

〈h(1)z , b
man〉 = δm,1 z

n,

the representative forms in this case read

λ1,1 = gqz2 , λ2,1 = 0, λ1,2 = h
(1)
z2 , λ2,2 = gz2 .

From Equation (3.4) we get the coproduct

µ∗(h(1)z ) = gqz ⊗ h
(1)
z + h

(1)
z ⊗ gz.

Since H◦q is also a Hopf algebra, we would want to know also products of the newly found

elements. We will only make explicit the subalgebra generated by h
(1)
z , leaving it as an exercise to

compute the products for elements g′z. It will turn out useful to define for any k ∈N and z ∈ C\ {0}
the elements h

(k)
z of the dual by

〈h(k)z , b
man〉 = δm,k z

n,

of which we have considered the special cases h
(1)
z and h

(0)
z = gz. The products are calculated as

follows, using Equation (4.4),

〈∆∗(h(k)z ⊗ h(l)w ), b
man〉 = 〈h(k)z ⊗ h(l)w ,∆(b

man)〉 =
m∑

j=0

�

m
j

�

q

〈h(k)z , b
jam− j+n〉 〈h(l)w , bm− jan〉

=

m∑

j=0

�

m
j

�

q

δ j,k z
m− j+n δm− j,l w

n
=

�

k + l
k

�

q

zl+n wn

= zl
�

k + l
k

�

q

〈h(k+l)zw , bman〉,

with the result

h
(k)
z h

(l)
w = zl

�

k + l
k

�

q

h
(k+l)
zw . (4.7)

We are ready to prove the following.
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Lemma 1. Let q ∈ C \ {0} be such that qN , 1 for all N ∈ Z \ {0}. Then the algebra Hq can be embedded

to its restricted dual by the linear map such that bman 7→ b̃mãn, where

ã = gq and b̃ = h(1)
1
.

This embedding is an injective homomorphism of Hopf algebras.

Proof. First, ã is grouplike and thus invertible. Second, one sees from Equation (4.7) that

ãb̃ = q h
(1)
q = q b̃ã,

which shows that the needed relations are satisfied, and the given embedding is an algebra
homomorphism. Denote by 1̃ = ǫ∗(1) = g1 the unit of the restricted dual Hopf algebra. From the
earlier formulas we also read that

µ∗(b̃) = ã ⊗ b̃ + b̃ ⊗ 1̃,

and by the earlier exercise the values of the coproduct µ∗, the counit η∗ and the antipode γ∗ on
the elements b̃mãn are uniquely determined by these conditions. Finally, the images of the basis
elements can be computed using Equation (4.7), and we get

b̃mãn = ~m�q! h
(m)
qn ,

which are non-zero and linearly independent elements of the dual when q is not a root of unity,
so the embedding is indeed injective. �

Braided bialgebras and braided Hopf algebras

In this sectionwediscuss the braiding structure that is characteristic of quantumgroups in addition
to just Hopf algebra structure.

Recall that if A is a bialgebra, then we’re able to equip tensor products of A-modules with an
A-module structure, and the one dimensional vector space Cwith a trivial module structure. The
coalgebra axioms guarantee in addition that the canonical vector space isomorphisms

(V1 ⊗ V2) ⊗ V3 � V1 ⊗ (V2 ⊗ V3)

and
V ⊗ C � V � C ⊗ V

become isomorphisms of A-modules. If A is cocommutative, ∆op = ∆, and if V and W are
A-modules, then also the tensor flip

SV,W : V ⊗W →W ⊗ V

becomes an isomorphism of A-modules. The property “braided” is a generalization of “cocom-
mutative”: we will not require equality of the coproduct and opposite coproduct, but only ask
the two to be related by conjugation, and we will be able to keep weakened forms of some of
the good properties of cocommutative bialgebras — in particular we obtain natural A-module
isomorphisms

cV,W : V ⊗W → W ⊗ V

that “braid” the tensor components.
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The braid groups

Let us start by what braiding usually means.

Definition 1. For n a positive integer, the braid group on n strands is the group Bn with generators

σ1, σ2 . . . , σn−1 and relations

σ j σ j+1 σ j = σ j+1 σ j σ j+1 for 1 ≤ j < n (4.8)

σ j σk = σk σ j for | j − k| > 1. (4.9)

To see why this is called braiding, we visualize the elements as operations on n vertical
strands, which we draw next to each other from bottom to top

1 2 n· · ·

.

The operations are continuation of the strands from the top, the generators and their inverses
being visualized as follows

σ j =

j

and σ−1j =

j

.

Having visualized the generators in this way, the equations σ−1
j
σ j = e = σ j σ

−1
j

tell us to identify

the following kinds of pictures

= = .

The braid group relations tell us to identify pictures for example as shown below

(4.8)
= and

(4.9)
= .

Remark 2. In the symmetric group Sn, the transpositions of consequtive elements satisfy the relations (4.8)
and (4.9). Such transpositions generate Sn, so there exists a surjective group homomorphism Bn → Sn such
that σ j 7→ ( j j + 1). In other words, the symmetric group is isomorphic to a quotient of the braid group.
In this quotient one only keeps track of the endpoints of the strands (permutation), forgetting about their
possible entanglement (braid).

The Yang-Baxter equation

A collection of complex numbers (rk,l
i, j
)i, j,k,l∈{1,2,...,d} is said to satisfy the Yang-Baxter equation if

d∑

a,b,c=1

rl,m
a,b

rb,n
c,k

ra,c
i, j
=

d∑

a,b,c=1

rm,n
a,b

rl,a
i,c

rc,b
j,k

for all i, j, k, l,m, n ∈ {1, 2, . . . , d} . (YBE)

Observe that there are d6 equations imposed on d4 complex numbers.
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Let V be a vector space with basis (vi)
d
i=1

and define

Ř : V ⊗ V → V ⊗ V by Ř(vi ⊗ v j) =

d∑

k,l=1

rk,l
i, j

vk ⊗ vl.

Then the Yang-Baxter equation is equivalent with

Ř12 ◦ Ř23 ◦ Ř12 = Ř23 ◦ Ř12 ◦ Ř23, (4.10)

where Ř12, Ř23 : V ⊗ V ⊗ V → V ⊗ V ⊗ V are defined as Ř12 = Ř ⊗ idV and Ř23 = idV ⊗ Ř. This
equation has obvious resemblance with Equation (4.8).

Example 1. If we set Ř(vi ⊗ v j) = vi ⊗ v j for all i, j ∈ {1, 2, . . . , d}, that is rk,li, j = δi,kδ j,l and Ř = idV⊗V, then

Ř satisfies the Yang-Baxter equation since both sides of Equation (4.10) become idV⊗V⊗V.

Example 2. If we set Ř(vi ⊗ v j) = v j ⊗ vi for all i, j ∈ {1, 2, . . . , d}, that is rk,li, j = δi,lδ j,k and Ř = SV,V, then

Ř satisfies the Yang-Baxter equation, as is verified by the following calculation on simple tensors

vi ⊗ v j ⊗ vk
SV,V⊗idV7→ v j ⊗ vi ⊗ vk

idV⊗SV,V7→ v j ⊗ vk ⊗ vi
SV,V⊗idV7→ vk ⊗ v j ⊗ vi

vi ⊗ v j ⊗ vk
idV⊗SV,V7→ vi ⊗ vk ⊗ v j

SV,V⊗idV7→ vk ⊗ vi ⊗ v j
idV⊗SV,V7→ vk ⊗ v j ⊗ vi.

Exercise 3. Let q ∈ C \ {0} and set

Ř(vi ⊗ v j) =





q vi ⊗ v j if i = j
v j ⊗ vi if i < j
v j ⊗ vi + (q − q−1) vi ⊗ v j if i > j

.

Verify that Ř satisfies the Yang-Baxter equation. Show also that (Ř − q) ◦ (Ř + q−1) = 0.

The notations Ř12 = Ř ⊗ idV and Ř23 = idV ⊗ Ř are a special case of acting on chosen tensor
components. More generally, if T : V ⊗ V→ V ⊗ V is a linear map, then on

V⊗n = V ⊗ V ⊗ · · · ⊗ V
︸             ︷︷             ︸

n times

we define Ti j, 1 ≤ i, j ≤ n, i , j, as the linear map that acts as T on the ith and jth tensor components
and as identity on the rest. Explicitly, if

T(vk ⊗ vk′) =

d∑

l,l′=1

tl,l
′

k,k′
vl ⊗ vl′ ,

then (assuming i < j for definiteness)

Ti j(vk1 ⊗ · · · ⊗ vkn) =

d∑

l,l′=1

tl,l
′

ki,k j
vk1 ⊗ · · · ⊗ vki−1 ⊗ vl ⊗ vki+1 ⊗ · · · ⊗ vk j−1 ⊗ vl′ ⊗ vk j+1 ⊗ · · · ⊗ vkn .

As an exercise, the reader can check that if we set R = SV,V ◦ Ř, then Equation (4.10) is
equivalent with the equation

R12 ◦ R13 ◦ R23 = R23 ◦ R13 ◦ R12. (4.11)

Note that here we could have taken the following as definitions

R12 = R ⊗ idV

R23 = idV ⊗ R

R13 = (idV ⊗ SV,V) ◦ (R ⊗ idV) ◦ (idV ⊗ SV,V).
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Proposition 2. If Ř : V ⊗ V → V ⊗ V is bijective and satisfies the Yang-Baxter equation (4.10), then on
V⊗n there is a representation of the braid group Bn, ρ : Bn → Aut(V⊗n), such that ρ(σ j) = Ř j j+1 for all
j = 1, 2, . . . , n − 1.

Proof. First, if Ř is bijective, then clearly Ř j j+1 ∈ Aut(V⊗n) for all j. To show existence of a group
homomorphism ρwith the given values on the generators σ j, we need to verify the relations (4.8)

and (4.9) for the images Ř j j+1. The first relation follows from the Yang-Baxter equation (4.10),

and the second is obvious since when | j − k| > 1, the matrix Ř j j+1 acts as identity on the tensor
components k and k + 1, and vice versa. �

Universal R-matrix and braided bialgebras

The universal R-matrix is an element of algebra, which in representations becomes a solution to
the Yang-Baxter equation. Let A be an algebra (in what follows always in fact a bialgebra or a
Hopf algebra), and equip A ⊗ A and A ⊗ A ⊗ A as usually with the algebra structures given by
componentwise products, for example (a⊗ a′) (b⊗ b′) = ab⊗ a′b′ for all a, a′, b, b′ ∈ A. Suppose that
we have an element R ∈ A ⊗ A, which we write as a sum of elementary tensors

R =

r∑

i=1

si ⊗ ti,

with some si, ti ∈ A, i = 1, 2, . . . , r. Then we use the notations

R12 =

∑

i

si ⊗ ti ⊗ 1A R13 =

∑

i

si ⊗ 1A ⊗ ti R23 =

∑

i

1A ⊗ si ⊗ ti.

Definition 2. Let A be a bialgebra (or a Hopf algebra). An element R ∈ A⊗A is called a universal R-matrix
for A if

(R0) R is invertible in the algebra A ⊗ A

(R1) for all x ∈ A we have ∆op(x) = R∆(x)R−1

(R2) (∆ ⊗ idA)(R) = R13 R23

(R3) (idA ⊗ ∆)(R) = R13 R12.

A pair (A,R) as above is called a braided bialgebra (or braided Hopf algebra, if A is a Hopf algebra).

Instead of the terms “braided bialgebra” or “braided Hopf algebra”, Drinfeld originally used
the terms “quasitriangular bialgebra” and “quasitriangular Hopf algebra”, which are therefore
occasionally used in literature.

Example 3. If A is a commutative bialgebra, ∆ = ∆op, then R = 1A ⊗ 1A is a universal R-matrix. Thus
braided bialgebras generalize cocommutative bialgebras.

Exercise 4. Let A = C[Z/NZ] be the group algebra of the cyclic group of order N, generated by one
element θ such that θN = 1A. Denote also ω = exp(2πi/N). Then the element

R =
1

N

N−1∑

k,l=0

ωkl θk ⊗ θl

is a universal R-matrix for A. (Hint: To find the inverse element, Proposition 7 may help.)

Lemma 3. If R is a universal R-matrix for a bialgebra A, then R−1
21
= SA,A(R

−1) is also a universal
R-matrix for A.
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Proof. Exercise. �

The promised isomorphism of tensor product representations in two different orders goes as
follows. LetA be a braided bialgebra (or braidedHopf algebra)with universal R-matrixR ∈ A⊗A,
and suppose that V and W are two A-modules, with ρV : A→ End(V) and ρW : A→ End(W) the
respective representations. Recall that the vector spaces V ⊗W andW ⊗ V are equipped with the
representations of A given by ρV⊗W = (ρV ⊗ ρW) ◦ ∆ and ρW⊗V = (ρW ⊗ ρV) ◦ ∆.
Proposition 4. The linear map cV,W : V ⊗W → W ⊗ V defined by

cV,W = SV,W ◦
(

(ρV ⊗ ρW)(R)
)

is an isomorphism of A-modules.

Proof. The map (ρV ⊗ ρW)(R) : V ⊗W → V ⊗W is bijective, with inverse (ρV ⊗ ρW)(R−1). Since
SV,W : V ⊗W → W ⊗ V is obviously also bijective, the map cV,W is indeed a bijective linear map.
We must only show that it respects the A-module structures. Let x ∈ A and compute

cV,W ◦ ρV⊗W(x) = SV,W ◦
(

(ρV ⊗ ρW)(R)
)

◦
(

(ρV ⊗ ρW)(∆(x))
)

= SV,W ◦
(

(ρV ⊗ ρW)(R∆(x))
)

(R1)
= SV,W ◦

(

(ρV ⊗ ρW)(∆op(x)R)
)

= SV,W ◦
(

(ρV ⊗ ρW)(∆op(x))
)

◦
(

(ρV ⊗ ρW)(R)
)

=

(

(ρW ⊗ ρV)(∆(x))
)

◦ SV,W ◦
(

(ρV ⊗ ρW)(R)
)

= ρW⊗V(x) ◦ cV,W.

This shows that the action by x in the different modules is preserved by cV,W. �

A few more properties of braided bialgebras are listed in the following.

Proposition 5. Let (A,R) be a braided bialgebra. Then we have

• (ǫ ⊗ idA)(R) = 1A and (idA ⊗ ǫ)(R) = 1A

• R12 R13 R23 = R23 R13 R12.

Proof. To prove the second property, write

R12 R13 R23
(R2)
= R12 (∆ ⊗ idA)(R)

(R1)
= (∆op ⊗ idA)(R) R12

=

(

(SA,A ⊗ idA) ◦ (∆ ⊗ idA)(R)
)

R12
(R2)
=

(

(SA,A ⊗ idA)(R13R23)
)

R12

= R23 R13 R12.

To prove the first formula of the first property, we use two different ways to rewrite the
expression

(ǫ ⊗ idA ⊗ idA) ◦ (∆ ⊗ idA)(R). (4.12)

On the one hand, we could simply use (ǫ ⊗ id) ◦ ∆ = id to write (4.12) as R. On the other hand, if
we denote r = (ǫ ⊗ idB)(R) ∈ A and use property (R2) of R-matrices, we get

(4.12)
(R2)
= (ǫ ⊗ idA ⊗ idA)(R13R23) = (1A ⊗ r)R.

The equality of the two simplified expressions, R = (1A ⊗ r)R, implies 1A ⊗ r = 1A ⊗ 1A since R is
invertible, and therefore we get r = 1A as claimed.

The case of (idA⊗ǫ)(R) is handled similarly by considering the expression (id⊗id⊗ǫ)◦(id⊗∆)(R)
instead of (4.12). �

9
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Suppose that ρV : A→ End(V) is a representation of a braided bialgebra A. The vector space
V⊗n is equipped with the representation of A

ρ = (ρV ⊗ ρV ⊗ · · · ⊗ ρV) ◦ ∆(n),

where ∆(n) denotes the n − 1-fold coproduct, defined (for example) as

∆
(n)
= (∆ ⊗ idA ⊗ · · · ⊗ idA) ◦ · · · ◦ (∆ ⊗ idA) ◦ ∆,

although by coassociativity we are allowed to write it in other ways if we wish. Combining the
second property of Proposition 5, the observation that Equations (4.11) and (4.10) are equivalent,
and Proposition 4, we have proved the following.

Theorem6. Let A be a braided bialgebra (or a braidedHopf algebra) with universal R-matrix R ∈ A⊗A, and
let ρV : A→ End(V) be a representation of A in a vector space V. Then the linear map Ř : V⊗V→ V⊗V
given by

Ř = cV,V = SV,V ◦
(

(ρV ⊗ ρV)(R)
)

is a solution to the Yang-Baxter equation. Moreover, on the n-fold tensor product space V⊗n, the braid
group action defined by Ř as in Proposition 2 commutes with the action of A.

Braided Hopf algebras

Let A = (A, µ,∆, η, ǫ, γ) be a Hopf algebra, and suppose that there exists a universal R-matrix
R ∈ A ⊗ A, i.e. that A can be made a braided Hopf algebra. We will now investigate some
implications that this has on the structure of the Hopf algebra and on the universal R-matrix..

Proposition 7. For a braided Hopf algebra A we have

(γ ⊗ idA)(R) = R−1 and (γ ⊗ γ)(R) = R.

Proof. Exercise. (Hint: For the first statement, remember Proposition 5. For the second, Lemma 3
may come in handy.) �

Wecannowprove a statement analogous to the property that in cocommutativeHopf algebras
the square of the antipode is the identity. Here we obtain that the square of the antipode of a
braided Hopf algebra is an inner automorphism.

Theorem 8. Let A be a braided Hopf algebra with a universal R-matrix R =
∑

i si ⊗ ti. Then, for all x ∈ A
we have

γ(γ(x)) = u x u−1,

where u ∈ A is
u = µ ◦ (γ ⊗ idA) ◦ SA,A(R) =

∑

i

γ(ti)si.

We also have
γ−1(x) = u−1 γ(x) u.

Proof. We will first prove an auxiliary formula,
∑

(x) γ(x(2)) u x(1) = ǫ(x) u for all x ∈ A. To get this,

10
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calculate
∑

(x)

γ(x(2)) u x(1) =
∑

(x)

∑

i

γ(x(2))γ(ti)six(1) =
∑

(x)

∑

i

γ(tix(2))six(1)

=

∑

(x)

∑

i

µ ◦ (γ ⊗ idA)
(

x(2)ti ⊗ six(1)
)

= µ ◦ (γ ⊗ idA) ◦ SA,A
(

R∆(x)
)

(R1)
= µ ◦ (γ ⊗ idA) ◦ SA,A

(

∆
op(x)R

)

=

∑

(x)

∑

i

γ(x(1)ti)x(2)si =
∑

(x)

∑

i

γ(ti)γ(x(1))x(2)si

(H3)
= ǫ(x)

∑

i

γ(ti) 1A si = ǫ(x) u.

Wewill then show that γ(γ(x))u = ux. To do this, use the auxiliary formula for the first component
”x(1)” of the coproduct of x ∈ A in the third equality below

γ(γ(x)) u
(H2′)
= γ(γ(

∑

(x)

ǫ(x(1)) x(2))) u =
∑

(x)

γ(γ(x(2))) ǫ(x(1)) u

auxiliary
=

∑

(x)
double coproduct

γ(γ(x(3)))γ(x(2)) u x(1)

=

∑

(x)
double coproduct

γ(x(2)γ(x(3))) u x(1)

(H3)
=

∑

(x)

ǫ(x(2)) γ(1A) u x(1)

(H2′)
= γ(1A) u x = u x.

Now to prove the formula γ(γ(x)) = uxu−1 it suffices to show that u is invertible. We claim that
the inverse is

ũ = µ ◦ (idA ⊗ γ2) ◦ SA,A(R) =
∑

i

tiγ
2(si).

Let us calculate, using the property γ2(x)u = ux,

ũ u =
∑

i

ti γ
2(si) u =

∑

i

ti u si =
∑

i, j

ti γ(t j) s j si

Prop 7
=

∑

i, j

γ(ti)γ(t j) s j γ(si) =
∑

i, j

γ(t jti) s j γ(si)

= µop ◦ (idA ⊗ γ)
(∑

i, j

s jγ(si) ⊗ t jti
)

Prop 7
= µop ◦ (idA ⊗ γ)

(

R R−1
)

= γ(1A)1A = 1A.

Likewise,

u ũ =
∑

i

u ti γ
2(si) =

∑

i

γ2(ti) uγ
2(si),

which by Proposition 7 equals
∑

i ti u si, and this expression was already computed above to be 1A.

It is an exercise to derive the last statement from the first. �
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The Drinfeld double construction

There is a systematic way of creating braided Hopf algebras, the Drinfeld double construction.

Let us assume that A = (A, µ,∆, η, ǫ, γ) is a Hopf algebra such that γ has an inverse γ−1, and
B ⊂ A◦ is a sub-Hopf algebra. We denote the unit of A simply by 1 = η(1), and the unit of A◦ (and
thus also of B) by 1∗. Thus for any a ∈ Awe have 〈1∗, a〉 = ǫ(a). For any ϕ ∈ Bwe use the following
notation for the coproduct

µ∗(ϕ) =
∑

(ϕ)

ϕ(1) ⊗ ϕ(2).

Theorem 9. Let A and B ⊂ A◦ be as above. Then the space A ⊗ B admits a unique Hopf algebra structure
such that:

(i) The map ιA : A→ A ⊗ B given by a 7→ a ⊗ 1∗ is a homomorphism of Hopf algebras.

(ii) The map ιB : Bcop → A ⊗ B given by ϕ 7→ 1 ⊗ ϕ is a homomorphism of Hopf algebras.

(iii) For all a ∈ A, ϕ ∈ B we have
(a ⊗ 1∗) (1 ⊗ ϕ) = a ⊗ ϕ.

(iv) For all a ∈ A, ϕ ∈ B we have

(1 ⊗ ϕ) (a ⊗ 1∗) =
∑

(a)

∑

(ϕ)

〈ϕ(1), a(3)〉 〈ϕ(3), γ
−1(a(1))〉 a(2) ⊗ ϕ(2).

This Hopf algebra is denoted byD(A,B) and it is called the Drinfeld double associated to A and B.

Example 4. When A is finite dimensional, A◦ = A∗ is a Hopf algebra. It can also be shown that the
antipode is always invertible in the finite dimensional case. The Drinfeld double associated to A and A∗ is
then denoted simply byD(A).

Example 5. When q is not a root of unity, we showed in Lemma 1 that the Hopf algebra Hq can be embedded

to its restricted dual by a map such that a 7→ ã, b 7→ b̃. We will later consider in detail the Drinfeld double
associated to the Hopf algebra Hq and the sub-Hopf algebra of H◦q which is isomorphic to Hq.

Proof of uniqueness in Theorem 9. When one claims that something exists and is uniquely deter-
mined by some given properties, it is often convenient to start with a proof of uniqueness, in the
course of which one obtains explicit formulas that help proving existence. This is what we will do
now. Denote the structural maps ofD(A,B) by µD, ∆D, ηD, ǫD and γD, in order to avoid confusion
with the structural maps of A (and of A◦).

In order to prove that the product µD is uniquely determined by the conditions, it suffices
to compute its values on simple tensors. So let a, b ∈ A, ϕ,ψ ∈ B and use the propertiy (iii) to
write (a ⊗ ϕ) = (a ⊗ 1∗)(1 ⊗ ϕ) and (b ⊗ ψ) = (b ⊗ 1∗)(1 ⊗ ψ). Then calculate, assuming that µD is an
associative product,

(a ⊗ ϕ) (b ⊗ ψ) = (a ⊗ 1∗) (1 ⊗ ϕ) (b ⊗ 1∗) (1 ⊗ ψ)
(iv)
= (a ⊗ 1∗)

( ∑

(ϕ),(b)

〈ϕ(1), b(3)〉 〈ϕ(3) γ
−1(b(1))〉 b(2) ⊗ ϕ(2)

)

(1 ⊗ ψ)

(iii)
= (a ⊗ 1∗)

( ∑

(ϕ),(b)

〈ϕ(1), b(3)〉 〈ϕ(3), γ
−1(b(1))〉 (b(2) ⊗ 1∗) (1 ⊗ ϕ(2))

)

(1 ⊗ ψ)

(i) and (ii)
=

∑

(ϕ),(b)

〈ϕ(1), b(3)〉 〈ϕ(3), γ
−1(b(1))〉 (ab(2) ⊗ 1∗) (1 ⊗ ϕ(2)ψ).

By (iii) this simplifies to

(a ⊗ ϕ) (b⊗ ψ) =
∑

(ϕ),(b)

〈ϕ(1), b(3)〉 〈ϕ(3), γ
−1(b(1))〉 ab(2) ⊗ ϕ(2)ψ, (4.13)

12
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and we see that the product µD is indeed uniquely determined.

The unit in an associative algebra is always uniquely determined, and it is easy to show that
it has to be given by

ηD(1) = 1 ⊗ 1∗. (4.14)

The coproduct has tobe a homomorphismof algebras. Thususing (iii): (a⊗ϕ) = (a⊗1∗)(1⊗ϕ) =
ιA(a) ιB(ϕ), and (i): ∆D(ιA(a)) =

∑

(a) ιA(a(1)) ⊗ ιA(a(2)) and (ii): ∆D(ιB(ϕ)) =
∑

(ϕ) ιB(ϕ(2)) ⊗ ιB(ϕ(1)) we
get

∆D(a ⊗ ϕ) =
∑

(a),(ϕ)

(a(1) ⊗ ϕ(2)) ⊗ (a(2) ⊗ ϕ(1)). (4.15)

The counit, too, has to be a homomorphism of algebras, so as above we easily get

ǫD(a ⊗ ϕ) = ǫ(a) 〈ϕ, 1〉. (4.16)

Finally, the antipodehas tobe a homomorphismof algebras fromD(A,B) toD(A,B)op, so again
by (iii) we must have γD(a⊗ϕ) = γ(ιB(ϕ))γ(ιA(a)). From (i) we get the obvious γ(ιA(a)) = γ(a)⊗ 1∗.
Recall that the antipode of the co-opposite Hopf algebra is the inverse of the ordinary, and
that the antipode of the restricted dual is obtained by taking the transpose. Then (ii) gives
γD(ιB(ϕ)) = 1 ⊗ (γ∗)−1(ϕ). Now using (iv) and the homomorphism properties of antipodes, and
properties of transpose, we get

γD(a ⊗ ϕ) =
∑

(a),(ϕ)

〈ϕ(1), γ
−1(a(3))〉 〈ϕ(3), a(1)〉 γ(a(2)) ⊗ (γ∗)−1(ϕ(2)). (4.17)

�

Beforewe turn toverifying the existencepart of theproof, let us already showhowtheDrinfeld
double construction yields braided Hopf algebras. Assume here that A is a finite dimensional
Hopf algebra with basis (ei)

d
i=1

, and let (δi)d
i=1

denote the dual basis for A∗, so that

〈δi, e j〉 =
{

1 if i = j
0 if i , j

.

We have already met the evaluation map A∗ ⊗ A → C given by ϕ ⊗ a 7→ 〈ϕ, a〉. Let us now
introduce the coevaluation map coev : C → A ⊗ A∗, which under the identification A ⊗ A∗ �
Hom(A,A) corresponds to λ 7→ λ idA. We can write explicitly

coev(λ) = λ

d∑

i=1

ei ⊗ δi.

Below we will frequently use the formula

d∑

i=1

〈δi, b〉 ei = b,

valid for any b ∈ A. The combination of counitality with the defining property of the antipode is
repeatedly used abusing the notation for multiple coproducts, for example as

∑

(b)

(

γ(b( j))b( j+1)
)

⊗ b(1) ⊗ · · · ⊗ b( j−1) ⊗ b( j+2) ⊗ · · · ⊗ b(n) =
∑

(b)

(

1A
)

⊗ b(1) ⊗ · · · ⊗ b(n−2),

and analoguously in other similar cases, also with γ−1 in the opposite or co-opposite cases.

13
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Theorem 10. Let A be a finite dimensional Hopf algebra with invertible antipode, and let (ei)
d
i=1

and (δi)d
i=1

be dual bases of A and A∗. Then the Drinfeld double D(A) is a braided Hopf algebra with a universal
R-matrix

R = (ιA ⊗ ιA∗ )(coev(1)) =
d∑

i=1

(ei ⊗ 1∗) ⊗ (1 ⊗ δi).

Proof. Let us start by showing (R0), i.e. that R is invertible. The inverse is given by

R̄ =
∑

i

(γ(ei) ⊗ 1∗) ⊗ (1 ⊗ δi),

as Proposition 7 requires. We compute

R R̄ =
(∑

i

(ei ⊗ 1∗) ⊗ (1 ⊗ δi)
) (∑

j

(γ(e j) ⊗ 1∗) ⊗ (1 ⊗ δ j)
)

=

∑

i, j

(eiγ(e j) ⊗ 1∗) ⊗ (1 ⊗ δiδ j).

We would like to show that this elements ofD(A) ⊗D(A) = A ⊗ A∗ ⊗ A ⊗ A∗ is the unit 1D ⊗ 1D =
1 ⊗ 1∗ ⊗ 1 ⊗ 1∗. Consider evaluating the expressions in A ⊗ A∗ ⊗ A ⊗ A∗ in the second and fourth
components at b ∈ A and c ∈ A. By the above calculation we see that R R̄ evaluates to

∑

i, j

eiγ(e j) ⊗ 1 〈1∗, b〉 〈δiδ j, c〉 = ǫ(b)
∑

i, j

∑

(c)

eiγ(e j) ⊗ 1 〈δi, c(1)〉 〈δ j, c(2)〉

= ǫ(b)
∑

(c)

c(1)γ(c(2)) ⊗ 1 = ǫ(b)ǫ(c) 1 ⊗ 1.

But the unit 1⊗ 1∗⊗ 1⊗ 1∗ would obviously have evaluated to the same value, so we conclude that
R̄ is a right inverse: R R̄ = 1 ⊗ 1∗ ⊗ 1 ⊗ 1∗. To show that R̄ is a left inverse is similar.

To prove property (R1), note that the set of elements that verifies the property

S =
{

x ∈ D(A) : ∆
op

D (x)R = R∆D(x)
}

is a subalgebra ofD: indeed the unit 1D = 1 ⊗ 1∗ has coproduct ∆D(1D) = 1D ⊗ 1D = ∆op(1D) so it
is clear that 1D ∈ S, and if x, y ∈ S, then

∆
op

D (xy)R = ∆
op

D (x)∆
op

D (y)R = ∆
op

D (x)R∆D(y) = R∆D(x)∆D(y) = R∆D(xy).

By the defining formulas for the products in a Drinfeld double, elements of the form a ⊗ 1∗ and
1⊗ ϕ generateD(A) as an algebra, so it suffices to show that the property (R1) holds for elements
of these two forms.

Consider an element of the form a ⊗ 1∗. We only need the easy product formulas in the
Drinfeld double to compute

∆
op

D (a ⊗ 1)R =
∑

i

∑

(a)

(

(a(2) ⊗ 1∗) (ei ⊗ 1∗)
)

⊗
(

(a(1) ⊗ 1∗) (1 ⊗ δi)
)

=

∑

i

∑

(a)

(

(a(2)ei ⊗ 1∗)
)

⊗
(

(a(1) ⊗ δi)
)

,

but for the other term we need the more general products

R∆D(a ⊗ 1) =
∑

i

∑

(a)

(

(ei ⊗ 1∗) (a(1) ⊗ 1∗)
)

⊗
(

(1 ⊗ δi) (a(2) ⊗ 1∗)
)

=

∑

i

∑

(a)

(

eia(1) ⊗ 1∗
)

⊗
(∑

(δi)

〈

(δi)(3), γ
−1(a(2))

〉 〈

(δi)(1), a(4)
〉

a(3) ⊗ (δi)(2)
)

14
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To show the equality of these two expressions inD⊗D � A ⊗A∗ ⊗A⊗A∗, evaluate in the second
and fourth components on two elements b, c of A. The first expression evaluates to

∑

i

∑

(a)

ǫ(b)
〈

δi, c
〉

a(2)ei ⊗ a(1) =
∑

(a)

ǫ(b) a(2)c ⊗ a(1)

and the second to
∑

i

∑

(a)

∑

(δi)

ǫ(b)
〈

(δi)(2), c
〉 〈

(δi)(3), γ
−1(a(2))

〉 〈

(δi)(1), a(4)
〉

eia(1) ⊗ a(3)

= ǫ(b)
∑

i

∑

(a)

〈

δi, a(4) cγ
−1(a(2))

〉

eia(1) ⊗ a(3)

= ǫ(b)
∑

(a)

a(4) cγ
−1(a(2)) a(1) ⊗ a(3)

(H3) for Aop

= ǫ(b)
∑

(a)

a(2) c ⊗ a(1),

which is the same as the first. We conclude that for all a ∈ A the equality ∆op(a⊗ 1∗)R = R∆(a ⊗ 1∗)
holds.

Showing that elements of the form 1 ⊗ ϕ satisfy the property is similar. We have then shown
that the set of elements S for which ∆op(x)R = R∆(x) holds is a subalgebra containing a generating
set of elements, so S = D(A). Since we have also shown that R is invertible, we now conclude
property (R1).

Properties (R2) and (R3) of the R-matrix are similar and they can be verified in the same way.
We leave this as an exercise. �

We should still verify that in the Drinfeld double construction the structural maps µD, ∆D,
ηD, ǫD and γD, given by formulas (4.13 – 4.17), satisfy the axioms (H1 –H6). This is mostly routine
and we will leave checking some of the axioms to the dedicated reader. In view of formulas (4.13
– 4.17) it is also clear that the embedding maps ιA : A → D(A,B) and ιB : Bcop → D(A,B) are
homomorphisms of Hopf algebras.

For checking the associativity property we still introduce a lemma. Note that the product
(4.13) can be written as

µD = (µ ⊗ ∆∗) ◦ (idA ⊗ τ ⊗ idB) : A ⊗ B ⊗ A ⊗ B→ A ⊗ B, (4.18)

where τ : B ⊗ A→ A ⊗ B is given by

τ(ϕ ⊗ a) =
∑

(a),(ϕ)

〈ϕ(1), a(3)〉 〈ϕ(3), γ
−1(a(1))〉 a(2) ⊗ ϕ(2)

Lemma 11. We have the following equalities of linear maps

τ ◦ (idB ⊗ µ) = (µ ⊗ idB) ◦ (idA ⊗ τ) ◦ (τ ⊗ idA) : B ⊗ A ⊗ A→ A ⊗ B

τ ◦ (∆∗ ⊗ idA) = (idA ⊗ ∆∗) ◦ (τ ⊗ idB) ◦ (idB ⊗ τ) : B ⊗ B ⊗ A→ A ⊗ B

Proof. Consider the first claimed equation. We take ϕ ∈ B and a, b ∈ A, and show that the values
of both maps on the simple tensor ϕ ⊗ a ⊗ b are equal. Calculating the left hand side, we use the
homomorphism property of coproduct

τ(ϕ ⊗ ab) =
∑

(ϕ),(ab)

〈ϕ(1), (ab)(3)〉 〈ϕ(3), γ
−1((ab)(1))〉 (ab)(2) ⊗ ϕ(2)

=

∑

(ϕ),(a),(b)

〈ϕ(1), a(3)b(3)〉 〈ϕ(3), γ
−1(a(1)b(1))〉 a(2)b(2) ⊗ ϕ(2).
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We then calculate the right hand side using in the second and third steps coassociativity and
definition of the coproduct µ∗|B in B ⊂ A◦, respectively,

(µ ⊗ idB) ◦ (idA ⊗ τ) ◦ (τ ⊗ idA)(ϕ ⊗ a ⊗ b)

= (µ ⊗ idB) ◦ (idA ⊗ τ)
( ∑

(ϕ),(a)

〈ϕ(1), a(3)〉 〈ϕ(3), γ
−1(a(1))〉 a(2) ⊗ ϕ(2) ⊗ b

)

= (µ ⊗ idB)
( ∑

(ϕ),(a),(b)

〈ϕ(1), a(3)〉 〈ϕ(5), γ
−1(a(1))〉 〈ϕ(2), b(3)〉 〈ϕ(4), γ

−1(b(1))〉 a(2) ⊗ b(2) ⊗ ϕ(3)

)

=

∑

(ϕ),(a),(b)

〈ϕ(1), a(3)b(3)〉 〈ϕ(3), γ(b(1))γ
−1(a(1))〉 a(2)b(2) ⊗ ϕ(2).

By the anti-homomorphism property of γ−1, the expressions are equal, so we have proved the first
equality. The proof of the second equality is similar. �

Sketch of a proof of the Hopf algebra axioms in Theorem 9. Let us check associativity (H1) of D(A,B).
Using first Equation (4.18), then the second formula in Lemma 11, and finally changing the order
of maps that operate in different components, we calculate

µD ◦ (µD ⊗ idD) = (µ ⊗ ∆∗) ◦ (idA ⊗ τ ⊗ idB) ◦ (µ ⊗ ∆∗ ⊗ idA ⊗ idB) ◦ (idA ⊗ τ ⊗ idB ⊗ idA ⊗ idB)

= (µ ⊗ ∆∗) ◦ (idA ⊗ idA ⊗ ∆∗ ⊗ idB) ◦ (idA ⊗ τ ⊗ idB ⊗ idB) ◦ (idA ⊗ idB ⊗ τ ⊗ idB)

◦ (µ ⊗ idB ⊗ idB ⊗ idA ⊗ idB) ◦ (idA ⊗ τ ⊗ idB ⊗ idA ⊗ idB)

= (µ ⊗ ∆∗) ◦ ((µ ⊗ idA) ⊗ (∆∗ ⊗ idB)) ◦ (idA ⊗ idA ⊗ τ ⊗ idB ⊗ idB) ◦ (idA ⊗ τ ⊗ τ ⊗ idB).

Likewise, with the first of the formulas in the lemma, we calculate

µD ◦ (idD ⊗ µD) = (µ ⊗ ∆∗) ◦ (idA ⊗ τ ⊗ idB) ◦ (idA ⊗ idBµ ⊗ µ ⊗ ∆∗) ◦ (idA ⊗ idB ⊗ idA ⊗ τ ⊗ idB)

= (µ ⊗ ∆∗) ◦ (idA ⊗ µ ⊗ idB ⊗ idB) ◦ (idA ⊗ idA ⊗ τ ⊗ idB) ◦ (idA ⊗ τ ⊗ idA ⊗ idB ⊗ idB)

◦ (idA ⊗ idB ⊗ idA ⊗ idA ⊗ ∆∗) ◦ (idA ⊗ idB ⊗ idA ⊗ τ ⊗ idB)

= (µ ⊗ ∆∗) ◦ ((idA ⊗ µ) ⊗ (idB ⊗ ∆∗)) ◦ (idA ⊗ idA ⊗ τ ⊗ idB ⊗ idB) ◦ (idA ⊗ τ ⊗ τ ⊗ idB).

Using associativity (H1) for both algebras (A, µ, η) and (B,∆∗, ǫ∗) we see that these two expressions
match and associativity follows for the Drinfeld doubleD(A,B).

Some of the other axioms are very easy to check. Consider for example coassociativity (H1’)
ofD(A,B). In view of Equation (4.15), and coassociativity of both A and B, we have

(∆D ⊗ idD) ◦ ∆D(a ⊗ ϕ) =
∑

(a)

∑

(ϕ)

∑

(a(1))

∑

(ϕ(2))

(a(1))(1) ⊗ (ϕ(2))(2) ⊗ (a(1))(2) ⊗ (ϕ(2))(1) ⊗ a(2) ⊗ ϕ(1)

=

∑

(a)

∑

(ϕ)

∑

(a(2))

∑

(ϕ(1))

a(1) ⊗ ϕ(2) ⊗ (a(2))(1) ⊗ (ϕ(1))(2) ⊗ (a(2))(2) ⊗ (ϕ(1))(1)

= (idD ⊗ ∆D) ◦ ∆D(a ⊗ ϕ).

�

A Drinfeld double of Hq and the quantum groupUq(sl2)

A Drinfeld double of Hq for q not a root of unity

Let q ∈ C \ {0}, and assume throughout that qN , 1 for all N , 0. Recall that as an algebra, Hq is
generated by elements a, a−1, b subject to the relations

a a−1 = 1 , a−1 a = 1 , a b = q b a.
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The Hopf algebra structure on Hq is then uniquely determined by the coproducts of a and b,

∆(a) = a ⊗ a , ∆(b) = a ⊗ b + b ⊗ 1.

We have considered the elements 1∗, ã, ã−1, b̃ ∈ H◦q given by

〈1∗, bman〉 = δm,0 , 〈ã±1, bman〉 = δm,0 q
±n , 〈b̃, bman〉 = δm,1.

Let H′q ⊂ H◦q be the Hopf subalgebra of H◦q generated by these elements. By Lemma 1, H′q is

isomorphic to Hq as a Hopf algebra by the isomorphism which sends a 7→ ã and b 7→ b̃. In

particular, (b̃m ãn)m∈N,n∈Z is a basis of H′q.

For the Drinfeld double we need the inverse of the antipode. This is given in the following.

Exercise 5. In Hq, the antipode γ is invertible and its inverse is given by

γ−1(bman) = (−1)m q−
1
2m(m−1)−mn bma−m−n.

Therefore we can consider the associated Drinfeld double, Dq = D(Hq,H
′
q). Both Hq and H′q

are embedded in Dq, so let us choose the following notation for the embedded generators

α = ιHq
(a) = a ⊗ 1∗ β = ιHq

(b) = b ⊗ 1∗ α̃ = ιH′q (ã) = 1 ⊗ ã β̃ = ιH′q(b̃) = 1 ⊗ b̃.

We have, by properties (i), (ii), (iii) of Drinfeld double

βm αn β̃m
′
α̃n
′
= bman ⊗ b̃m

′
ãn
′

and these elements, for m,m′ ∈N and n, n′ ∈ Z form a basis of Dq.

Let us start by calculating the products of the elements α, β, α̃, β̃ ∈ Dq. Among the products
of the generators of Dq, property (i) makes those involving only α and β trivial, and property (ii)
makes those involving only α̃ and β̃ trivial. Also by property (iii) there is nothing to calculate for
the products α α̃, α β̃, β α̃, β β̃. For the rest, we need the double coproducts of a and b,

(∆ ⊗ idHq
) ◦ ∆(a) = a ⊗ a ⊗ a

(∆ ⊗ idHq
) ◦ ∆(b) = a ⊗ a ⊗ b + a ⊗ b ⊗ 1 + b ⊗ 1 ⊗ 1,

and of ã and b̃ for which the formulas are the same. We also need particular cases of Exercise 5:

γ−1(a) = a−1 , γ−1(b) = −b a−1.

The products that require short calculations are

α̃ α = 〈ã, a〉
︸︷︷︸

=q

〈ã, γ−1(a)〉
︸     ︷︷     ︸

=q−1

a ⊗ ã = α α̃

and

α̃ β = 〈ã, b〉
︸︷︷︸

=0

〈ã, γ−1(a)〉
︸     ︷︷     ︸

=q−1

a ⊗ ã + 〈ã, 1〉
︸︷︷︸

=1

〈ã, γ−1(a)〉
︸     ︷︷     ︸

=q−1

b ⊗ ã + 〈ã, 1〉
︸︷︷︸

=1

〈ã, γ−1(b)〉
︸     ︷︷     ︸

=0

1 ⊗ ã

= q−1 β α̃

and

β̃ α = 〈ã, a〉
︸︷︷︸

=q

〈b̃, γ−1(a)〉
︸     ︷︷     ︸

=0

a ⊗ ã + 〈ã, a〉
︸︷︷︸

=q

〈1∗, γ−1(a)〉
︸      ︷︷      ︸

=1

a ⊗ ã + 〈b̃, a〉
︸︷︷︸

=0

〈1∗, γ−1(a)〉
︸      ︷︷      ︸

=1

a ⊗ ã

= q α β̃
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and

β̃ β = 〈ã, b〉 〈b̃, γ−1(a)〉 a ⊗ ã + 〈ã, 1〉 〈b̃, γ−1(a)〉 b ⊗ ã + 〈ã, 1〉 〈b̃, γ−1(b)〉 1 ⊗ ã

+ 〈ã, b〉 〈1∗, γ−1(a)〉 a ⊗ b̃ + 〈ã, 1〉 〈1∗, γ−1(a)〉 b ⊗ b̃ + 〈ã, 1〉 〈1∗, γ−1(b)〉 1 ⊗ b̃

+ 〈b̃, b〉 〈1∗, γ−1(a)〉 a ⊗ 1∗ + 〈b̃, 1〉 〈1∗, γ−1(a)〉 b ⊗ 1∗ + 〈b̃, 1〉 〈1∗, γ−1(b)〉 1 ⊗ 1∗

= − α̃ + β β̃ + α.

We get the following description of Dq.

Proposition 12. The Hopf algebra Dq is, as an algebra, generated by elements α, α−1, β, α̃, α̃−1, β̃ with
relations

αα−1 = 1 = α−1α α̃α̃−1 = 1 = α̃−1α̃

αβ = q βα α̃β̃ = q β̃α̃

αβ̃ = q−1 β̃α α̃β = q−1 βα̃

αα̃ = α̃α β̃β − ββ̃ = α − α̃.

The Hopf algebra structure on Dq is the unique one such that

∆(α) = α ⊗ α ∆(α̃) = α̃ ⊗ α̃ ∆(β) = α ⊗ β + β ⊗ 1 ∆(β̃) = β̃ ⊗ α̃ + 1 ⊗ β̃.

Proof. It is clear that the elements generate Dq, and we have just shown that the above relations
hold for the generators. Using the relations it is possible to express any element of Dq as a linear

combination of the vectors βmαnβ̃m
′
α̃n
′
. Since these are linearly independent in Dq, it follows that

the algebra Dq has a presentation given by the generators and relations as stated. The coproduct
formulas for α, α̃, β, β̃ are obvious in view of requirements (i) and (ii) of Drinfeld double, and it is
a standard calculation to show that the structural maps are determined by the given values. �

The quantum groupUq(sl2) as a quotient of Dq2

To take quotients of Hopf algebras we need the notion of Hopf ideals. A vector subspace J in a
Hopf algebra H is a Hopf ideal if J is a two-sided ideal of H as an algebra (i.e. µ(J ⊗ H) ⊂ J and

µ(H ⊗ J) ⊂ J), and J is a coideal of H as a coalgebra (i.e. ∆(J) ⊂ J ⊗ H + H ⊗ J and ǫ|J = 0) and J
is an invariant subspace for the antipode (i.e. γ(J) ⊂ J). These requirements are precisely what
one needs for the structural maps to be well defined on the equivalence classes x+ J that form the
quotient space H/J.

Lemma 13. The element κ = α α̃ is a grouplike central element in Dq, and the two-sided ideal Jq generated
by κ − 1 is a Hopf ideal.

Proof. We have

∆(κ) = ∆(αα̃) = ∆(α)∆(α̃) = (α ⊗ α) (α̃ ⊗ α̃) = (αα̃ ⊗ αα̃) = κ ⊗ κ,

so κ is grouplike. To show that it is central, it suffices to show that it commuteswith the generators,
but this is easily seen from the relations in Proposition 12: for example

ακ = ααα̃ = αα̃α = κα

βκ = βαα̃ = q−1 αβα̃ = q−1 q αα̃β = κβ,

and similarly for commutation with α̃ and β̃. The two sided ideal generated by κ − 1 is spanned
by elements of the form x(κ − 1)y, where x, y ∈ Dq. To show that it is a coideal, we first compute

∆(κ − 1) = κ ⊗ κ − 1 ⊗ 1 = (κ − 1) ⊗ κ + 1 ⊗ (κ − 1) ∈ Jq ⊗Dq +Dq ⊗ Jq.
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Then, using ∆(x(κ − 1)y) = ∆(x)∆(κ − 1)∆(y), the more general result ∆(Jq) ⊂ Jq ⊗ Dq + Dq ⊗ Jq
follows. To show that Jq is stable under antipode, we first compute

γ(κ − 1) = α̃−1α−1 − 1 = α̃−1α−1(1 − αα̃) = −α̃−1α−1(κ − 1) ∈ Jq.

Then, using γ(x(κ−1)y) = γ(y)γ(κ−1)γ(x), themore general result γ(Jq) ⊂ Jq follows. To show that
ǫ|Jq = 0 note that ǫ(κ−1) = ǫ(κ)−ǫ(1) = 1−1 = 0 and thus also ǫ(x(κ−1)y) = ǫ(x) ǫ(κ−1) ǫ(y) = 0. �

We can now take the quotient Hopf algebra Dq/Jq. Let us summarize what we have done,
then. We’ve taken two copies of the building block, or the “quantum Borel subalgebra” Hq and
put them together by the Drinfeld double construction as Dq =D(Hq,H

′
q) — one of the copies has

generators α and β, and the other has generators α̃ and β̃. Thenwe have identified their “quantum
Cartan subalgebras”, generated respectively by α and α̃, by requiring α = α̃−1 (which is equivalent
to κ − 1 = 0). This is a way to obtain essentiallyUq(sl2), although, to be consistent with common
usage, we redefine the parameter q and use q2 instead.

If we use the notations K, E and F for the equivalence classes in Dq2/Jq2 of α̃,
−1

q−q−1 β̃ and β,

respectively, then the relations in Proposition 12 become the ones in the following definition of
Uq(sl2).

Definition 3. Let q ∈ C \ {0,+1,−1}. The algebraUq(sl2) is the algebra generated by elements E, F,K,K−1

with relations

KK−1 = 1 = K−1 K KEK−1 = q2 E

EF − FE =
1

q − q−1

(

K − K−1
)

K FK−1 = q−2 F.

We equipUq(sl2) with the unique Hopf algebra structure such that

∆(K) = K ⊗ K , ∆(E) = E ⊗ K + 1 ⊗ E , ∆(E) = K−1 ⊗ F + F ⊗ 1.

An easy comparison of the above definition with Proposition 12 and Lemma 13 gives the
following.

Proposition 14. When q is not a root of unity, then the Hopf algebrasUq(sl2) and Dq2/Jq2 are isomorphic.

A convenient Poincaré-Birkhoff-Witt type basis ofUq(sl2) is

(Fm Kk En)m,n∈N,k∈Z.

For working with the above parametrization, with q2 replacing what used to be q, it is
convenient to use the following more symmetric q-integers and q-factorials, which we denote as

[n] =
qn − q−n

q − q−1
(4.19)

[n]! = [n] [n − 1] · · · [2] [1] (4.20)
[

n
k

]

=
[n]!

[k]! [n − k]!
(4.21)

when considered as rational functions of q, and as

[n]q , [n]q! ,

[

n
k

]

q

,

respectively, when evaluated at a value q ∈ C \ {0}.

Exercise 6. Show the following properties of the q-integers, q-factorials and q-binomials
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(a) [n] = qn−1 + qn−3 + · · · + q−n+3 + q−n+1 and [n]q = q1−n ~n�q2

(b) [m + n] = qn [m] + q−m [n] = q−n [m] + qm [n]

(c) [l] [m − n] + [m] [n − l] + [n] [l −m] = 0

(d) [n] = [2] [n − 1] − [n − 2].

Representations of Dq2 andUq(sl2)

Let us now start analyzing representations of Uq(sl2) and the closely related Hopf algebra Dq2 .
The general story is very much parallel with the (more familiar) case of representations of sl2. In
particular, in a givenUq(sl2)-module V we will attempt to diagonalize K, and then notice that if v
is an eigenvector of K with eigenvalue λ,

K.v = λ v,

then E.v and F.v also either vanish or are eigenvectors of eigenvalues q±2λ,

K.(E.v) = KE.v = q2 EK.v = q2λ E.v , K.(F.v) = KF.v = q−2 FK.v = q−2λ F.v.

The situation is nicest if q2 is not a root of unity, so that repeated application of E (or F) on an
eigenvector produces other eigenvectors with distinct eigenvalues.

Another useful observation for studying representations is the following, very much ana-
loguous to the quadratic Casimir element of ordinary sl2.

Lemma 15. The elements C ∈ Uq(sl2) and ν ∈ Dq2 given by

C = EF +
1

(q − q−1)2

(

q−1 K + q K−1
)

= FE +
1

(q − q−1)2

(

q K + q−1 K−1
)

and

ν = β̃ β +
q

q − q−1
α +

q−1

q − q−1
α̃

= β β̃ +
q−1

q − q−1
α +

q

q − q−1
α̃

are central.

Proof. Let us first show that the two formulas for C are equal. Their difference is

EF − FE +
1

(q − q−1)2

(

(q−1 − q)K + (q − q−1)K−1
)

.

After canceling one factor q − q−1 from the numerator and denominator, this is seen to be zero by
one of the defining relations ofUq(sl2).

To show that C is central, it suffices to show that it commutes with the generators K, E and
F. Commutation with K is evident, since KEF = q2 EKF = EFK and the second term of C is a
polynomial in K and K−1. To show commutation with E, calculate CE using the first expression
for C to get

CE = EFE +
1

(q − q−1)2

(

q−1 KE + q K−1 E
)
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and EC using the second expression for C to get

EC = EFE +
1

(q − q−1)2

(

q EK + q−1 EK−1
)

.

Then it suffices to recall the relations KE = q2 EK and K−1E = q−2 EK−1 to see the equality CE = EC.
The commutation of Cwith F is shown similarly.

The verification that ν is central in Dq2 is left as an exercise. For q not a root of unity, the first
statement in fact follows from the second by passing to the quotientUq(sl2) � Dq2/Jq2 . �

On representations of Dq2

We will start by analyzing representations of Dq2 , because every representation ofUq(sl2) can be
interpreted as a representation of Dq2 , where κ = αα̃ acts as identity. Note that we thus assume q
is not a root of unity, so thatDq2 is defined andUq(sl2) � Dq2/Jq2 . The case when q is a root of unity
is more complicated in terms of representation theory and has to be treated separately anyway.

We will first look for irreducible representations of Dq2 , i.e. simple Dq2-modules. Note first of
all the following general principle (essentially the same as Schur’s lemma).

Lemma 16. If V is a finite dimensional irreducible representation of an algebra A, and if c ∈ A is a central
element, then there is a λ ∈ C such that c acts as λ idV on V.

Proof. It is always possible to find one eigenvector of c, with eigenvalue that is a root of the
characteristic polynomial. Call the eigenvalue λ and note that c − λ idV is a Dq2-module map
V→ V with a nontrivial kernel. The kernel is a subrepresentation, so by irreducibility it has to be
the whole V. �

Because of the above principle, we will in what follows consider only representations of Dq2

where κ = αα̃ acts as λ id. As a consequence α̃ has the same action as λα−1.

Suppose now that V is an irreducible representation ofDq2 , and denote the (only) eigenvalue
of κ by λ , 0. Take an eigenvector v of α, so α.v = µ′ v for some µ′ , 0. Now an easy computation
shows that the vectors β̃ j.v are either eigenvectors of α with eigenvalue q−2 jµ′, or zero vectors.
Since these eigenvalues are different and eigenvectors corresponding to different eigenvalues are
linearly independent, we see that if V is finite dimensional, then there must be a j > 0 such that
the vector w0 = β̃

j−1.v satisfies

β̃.w0 = 0 and α.w0 = µ w0,

where µ = q2(1− j)µ′. Denote w j = β
j.w0. Again, w j are eigenvectors of α with eigenvalues q2 jµ, so

for some d ∈N we have

wd−1 = βd−1.w0 , 0 but wd = β.wd−1 = βd.w0 = 0.

We claim that the linear span W ⊂ V of {w0,w1,w2, . . . ,wd−1} is a subrepresentation, and thus by
irreducibilityW = V. We have

α.w j = q2 jµ w j and α̃.w j = q−2 j
λ

µ
w j,

so W is stable under the action of α, α̃ and β. We must only verify that β̃ preserves W. Calculate
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the action of β̃ on w j commuting β̃ to the right of all β, and finally recalling that β̃.w0 = 0,

β̃.w j = β̃β
j.w0 = (ββ̃ + α − α̃)β j−1.w0

= ββ̃β j−1.w0 + (q2( j−1)µ − q−2( j−1)
λ

µ
) β j−1.w0

= β(ββ̃ + α − α̃)β j−2.w0 +

(

q2( j−1)µ − q−2( j−1)
λ

µ

)

β j−1.w0

= β2β̃β j−2.w0 +

(

(q2( j−1) + q2( j−2))µ − (q−2( j−1) + q−2( j−2))
λ

µ

)

β j−1.w0

= · · ·

= β jβ̃.w0 +

(

(q2( j−1) + q2( j−2) + · · · + q2 + 1)µ − (q−2( j−1) + q−2( j−2) + · · · + q−2 + 1)
λ

µ

)

β j−1.w0

= [ j]q
(

q j−1µ − q1− j
λ

µ

)

w j−1.

This finishes the proof that W is a subrepresentation. We will finally obtain a relation between
the values of µ, λ and d. For this, note that βd.w0 = wd = 0. Thus also β̃βd.w0 = 0. But the above
calculation is still valid and it says that β̃βd.w0 is a constant multiple of wd−1, with the constant
[d]q (q

d−1µ − q1−dλ/µ). This constant must therefore vanish, ans since the q-integers are non-zero,
we get the following relation between the parameters λ, µ and d

µ2
= q2(1−d)λ. (4.22)

Given λ ∈ C \ {0} and d ∈N, the two solutions for µ are

µ = ±q1−d
√
λ.

In particular, the eigenvalues of α on W are of the form q2 jµ and those of α̃ are q−2 jλ/µ, so the
spectra of both consist of

±
√
λq1−d, ±

√
λq3−d, . . . , ±

√
λqd−3, ±

√
λqd−1.

Note also that the action of β̃ simplifies a bit,

β̃.w j = ±
√
λ (q−1 − q) [ j]q [d − j]q w j−1.

We have in fact found all the irreducible finite dimensional representations of Dq2 .

Theorem 17. For any nonzero complex number λ and a choice of square root
√
λ, and d a positive integer,

there exists a d-dimensional irreducible representation W(
√
λ)

d
of Dq2 with basis {w0,w1,w2, . . . ,wd−1} such

that

α.w j =

√
λ q1−d+2 j w j α̃.w j =

√
λ qd−1−2 j w j

β.w j = w j+1 β̃.w j =

√
λ [ j]q [d − j]q (q

−1 − q) w j−1.

Any finite dimensional Dq2-module contains a submodule isomorphic to some W
(
√
λ)

d
, and in particular

there are no other finite dimensional irreducible Dq2 modules.

Proof. To verify that the formulas indeed define a representation is straightforward and the calcu-

lations are essentially the same as above. To verify irreducibility ofW
(
√
λ)

d
, note that ifW′ ⊂W

(
√
λ)

d
is a non-zero submodule, then it contains some eigenvector of α, which must be proportional to
some w j. Then by the repeated action of β̃ and βwe see thatW′ contains all w j, j = 0, 1, 2, . . . , d− 1
(note that the coefficient

√
λ [ j]q [d − j]q (q

−1 − q) is never zero for j = 1, 2, . . . , d − 1). Above we
already showed that any finite dimensional Dq2 module V must contain a submodule isomorphic

toW
(±
√
λ)

d
, so it follows indeed that these are all the possible irreducible Dq2-modules. �
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Since any representation of Uq(sl2) is a representation of Dq2 such that λ = 1, we have
also found all irreducible representations of Uq(sl2). To get the explicit formulas, recall that the

generators K, E, F correspond to the equivalence classes of α̃, −1
q−q−1 β̃ and βmodulo the Hopf ideal

Jq2 generated by the element κ − 1.

Theorem 18. Let q be a non-zero complex number which is not a root of unity. For any positive integer
d and for ε ∈ {+1,−1}, there exists a d-dimensional irreducible representation Wε

d
of Uq(sl2) with basis

{w0,w1,w2, . . . ,wd−1} such that

K.w j = ε q
d−1−2 j w j

F.w j = w j+1

E.w j = ε [ j]q [d − j]q w j−1.

There are no other finite dimensional irreducibleUq(sl2)-modules.

Proof. Follows directly from Theorem 17. �

Using the formulas in Lemma 15 one computes that on Wε
d

the central element C acts as ε
qd + q−d

(q − q−1)2
idWε

d
. (4.23)

Since the numbers ±(qd + q−d) are distinct, we see first of all that none of the Wε
d
are isomorphic

with each other (of course for different dimension d they couldn’t be isomorphic anyway). Thus
the value of C distinguishes the different irreducible representations.

On semisimplicity

Definition 4. Let A be an algebra. An A-moduleW is called simple (or irreducible) if the only submodules

of W are {0} and W . An A-module V is called completely reducible if V is isomorphic to a direct sum of

finitely many simple A-modules. An algebra A is called semisimple if all finite dimensional A-modules are

completely reducible.

The terms “simple module” and “irreducible representation” seem standard, but we will also
speak of irreducible modules with the same meaning.

Definition 5. An A-module V is called indecomposable if it can not be written as a direct sum of two

nonzero submodules.

In particular any irreducible module is indecomposable. And for semisimple algebras the
two concepts are the same.

The following classical result gives equivalent conditions for semisimplicity, which are often
practical.

Proposition 19. Let A be an algebra. The following conditions are equivalent.

(i) Any finite dimensional A-module is isomorphic to a finite direct sum of irreducible A-modules (i.e.
A is semisimple).

(ii) For any finite dimensional A-module V and any submodule W ⊂ V there exists a submodule W′ ⊂ V
(complementary submodule) such that V =W ⊕W′ as an A-module.

(iii) For any finite dimensional A-module V and any irreducible submodule W ⊂ V there exists a
submodule W′ ⊂ V such that V =W ⊕W′ as an A-module.
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(iv) For any finite dimensional A-module V and any submodule W ⊂ V there exists an A-module map
π : V →W such that π|W = idW (an A-linear projection to the submodule).

(v) For any finite dimensional A-module V and any irreducible submodule W ⊂ V there exists an
A-module map π : V →W such that π|W = idW.

Proof. Clearly (ii)⇒ (iii) and (iv)⇒ (v).

Let us show that (ii) and (iv) are equivalent, in the same way one shows that (iii) and (v) are
equivalent. Assume (ii), that any submodule W ⊂ V has a complementary submodule W′, that is
V = W ⊕W′. Then if π is the projection to W with respect to this direct sum decomposition, we
have that for all w ∈W, w′ ∈W′, a ∈ A

π (a · (w + w′)) = π(a · w + a · w′) = a · w = a · π(w + w′),

which shows that the projection is A-linear. Conversely, assume (iv) that for any submodule
W ⊂ V there is an A-linear projection π : V → W. The subspace W′ = Ker (π) is a submodule
complementary toW = Ker (1 − π).

We must still show for example that (iii)⇒ (i) and (i)⇒ (ii).

Assume (iii) and let V be a finite dimensional A-module (we may assume immediately that
V , {0}). Consider a non-zero submodule W1 ⊂ V of smallest dimension, it is necessarily
irreducible. If W1 = V we’re done, if not by property (iii) we have a complementary submodule
V1 ⊂ V with dim V1 < dim V and V = W1 ⊕ V1. Continue recursively to find the non-zero
irreducible submodules Wn ⊂ Vn−1 and their complementaries Vn in Vn−1, that is Vn−1 =Wn ⊕Vn.
The dimensions of the latter are strictly decreasing,

dim V > dim V1 > dim V2 > · · · ,

so for some n0 ∈N we haveWn = Vn−1 and

V =W1 ⊕W2 ⊕ · · · ⊕Wn0 ,

proving (i).

Let us finally prove that (i) implies (ii). Suppose V =
⊕

i∈I Wi, where I is a finite index set and
for all i ∈ I the submodule Wi is irreducible. SupposeW ⊂ V is a submodule, and choose a subset
J ⊂ I such that

W ∩





⊕

j∈J
W j




= {0} , (4.24)

but that for all i ∈ I \ J

W ∩




Wi ⊕

⊕

j∈J
W j




, {0} . (4.25)

Denote by W′ =
⊕

j∈J W j the submodule thus obtained. By Equation (4.24) the sum of W andW′

is direct, and we will prove that it is the entire module V. For that, note that by Equation (4.25) for
all i ∈ I \ J there exists w ∈W \ {0} such that w = wi + w′ with wi ∈Wi \ {0}, w′ ∈W′. Therefore the
submoduleW⊕W′ contains the nonzero vectorwi ∈Wi, and by irreducibilitywe getWi ⊂W⊕W′.
We get this inclusion for all i ∈ I \ J, and also evidently W j ⊂W ⊕W′ for all j ∈ J, so we conclude

V =
⊕

i∈I
Wi ⊂ W ⊕W′,

which finishes the proof. �
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We will verify complete reducibility ofUq(sl2) (for q not a root of unity) using the following
criterion.

Proposition 20. Suppose that A is a Hopf algebra for which the following criterion holds:

• Whenever R is an A-module and R0 ⊂ R is a submodule such that R/R0 is isomorphic to the
one-dimensional trivial A-module, then R0 has a complementary submodule P (which then must be
one-dimensional and trivial).

Then A is semisimple.

Remark 3. Actually the criterion can be stated in a superficially weaker form: it suffices that whenever R
is an A-module and R0 ⊂ R is an irreducible submodule of codimension one such that R/R0 is a trivial
module, then there is a complementary submodule P to R0. Indeed, assuming this weaker condition we can
perform an induction on dimension to get to the general case. If R0 is not irreducible, take a nontrivial
irreducible submodule S0 ⊂ R0. Then consider the module R/S0 and its submodule R0/S0 of codimension
one, which is trivial since (R/S0)/(R0/S0) � R/R0. The dimensions of the modules in question are strictly
smaller, so by induction we can assume that there is a trivial complementary submodule Q/S0 of dimension
one so that R/S0 = R0/S0 ⊕Q/S0 (here Q ⊂ R is a submodule containing S0, and dim Q = dim S0 + 1).
Now, since S0 is irreducible, we can use the weak form of the criterion to write Q = S0 ⊕ P with P trivial
one-dimensional submodule of Q. One concludes that R = R0 ⊕ P.

In the proof of Proposition 20, we will consider the A-module of linear maps

Hom(V,W) : (a. f )(v) =
∑

(a)

a(1). f (γ(a(2)).v) for a ∈ A, v ∈ V, f ∈ Hom(V,W)

associated to two A-modules V and W. The subspace HomA(V,W) ⊂ Hom(V,W) of A-module
maps from V toW is

HomA(V,W) =
{

f : V→ W linear | f (a.v) = a. f (v) for all v ∈ V, a ∈ A}

.

Generally, for any A-module V, the trivial part VA of V is defined as

VA
= {v ∈ V | a.v = ǫ(a) v for all a ∈ A} .

The trivial part of the A-module Hom(V,W) happens to consist precisely of the A-module maps.

Lemma 21. A map f ∈ Hom(V,W) is an A-module map if and only if a. f = ǫ(a) f for all a ∈ A. In other
words, we haveHomA(V,W) = Hom(V,W)A.

Proof. Assuming that f is an A-module map we calculate

(a. f )(v) =
∑

(a)

a(1). f (γ(a(2).v)) =
∑

(a)

a(1)γ(a(2)). f (v) = ǫ(a) f (v),

which shows the “only if” part. To prove the “if” part, suppose that a. f = ǫ(a) f for all a ∈ A. Then
calculate

f (a.v) = f
(∑

(a)

ǫ(a(1))a(2).v
)

=

∑

(a)

ǫ(a(1)) f (a(2).v)

=

∑

(a)

(a(1). f )(a(2).v) =
∑

(a)

a(1). f
(

γ(a(2))a(3).v
)

=

∑

(a)

a(1). f (ǫ(a(2)) v) = a. f (v).

�
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The observation that allows us to reduce general semisimplicity to the codimension one
criterion concerns the module Hom(V,W) in the particular case whenW is a submodule of V. We
are searching for an A-linear projection toW.

Lemma 22. Let V be an A-module and W ⊂ V a submodule. Let

r : Hom(V,W)→ Hom(W,W)

be the restriction map given by r( f ) = f |W for all f : V → W. Denote by R the subspace of maps whose
restriction is a multiple of the identity of W, that is

R = r−1(C idW).

Then we have

(a) Im (r|R) = C idW

(b) R ⊂ Hom(V,W) is a submodule

(c) Ker (r|R) ⊂ R is a submodule

(d) R/Ker (r|R) is a trivial one dimensional module.

Proof. The assertion (a) is obvious, since Im (r|R) ⊂ C idW by definition and the image of any
projection p : V → W is idW. It follows directly also that R/Ker (r|R) is a one-dimensional vector
space. All the rest of the properties are consequences of the following calculation: if f ∈ R so that
there is a λ ∈ C such that f (w) = λw for all w ∈W, then for any a ∈ Awe have

(a. f )(w) =
∑

(a)

a(1). f
(

γ(a(2)).w
)

=

∑

(a)

a(1).
(

λ γ(a(2)).w
)

= λ
∑

(a)

a(1)γ(a(2)).w = λǫ(a) w.

Indeed, this directly implies (b): (a. f )|W = λǫ(a) idW. For (c), note that Ker (r) corresponds to the
case λ = 0, in which case also (a. f )|W = 0. For (d), rewrite the rightmost expression once more to
get (a. f )|W = ǫ(a) f |W and thus a. f = ǫ(a) f + gwhere g = a. f − ǫ(a) f and note that g|W = 0. �

We are now ready to give a proof of the semisimplicity criterion.

Proof of Proposition 20. Assume the property that all codimension one submodules with trivial
quotient modules have complements. We will establish semisimplicity by verifying property (iv)
of Proposition 19. Suppose therefore that V is a finite dimensional A-module and W ⊂ V is a
submodule. Consider R ⊂ Hom(V,W) consisting of those f : V → W for which the restriction
f |W to W is a multiple of identity, and R0 consisting of those f : V → W which are zero on W.
By the above lemma R0 ⊂ R ⊂ Hom(V,W) are submodules and R/R0 is the one dimensional
trivial A-module. By the assumption, then, R0 has a complementary submodule P, which is
one dimensional and trivial. Choose a non-zero π ∈ P normalized so that π|W = 1 idW. Then
π : V →W is a projection toW. Since P is a trivial module, we have a.π = ǫ(a)π, so by Lemma 21
the projection π : V → W is an A-module map. Thus property (iv) of Proposition 19 holds, and
by the same Proposition, A is semisimple. �

Let us then check thatUq(sl2) satisfies the criterion when q is not a root of unity.

Lemma 23. Let q ∈ C \ {0} not a root of unity. If V is a finite dimensional Uq(sl2)-module and W ⊂ V
is an irreducible submodule such that V/W is a trivial one dimensional module, then there is a trivial one
dimensional submodule W′ ⊂ V such that V =W ⊕W′.
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Proof. Theorem 18 lists all possible irreducibleUq(sl2)-modules, they areWε
d
for d a positive integer

and ε ∈ {±1}. So we have W � Wε
d
for some d and ε. We first suppose that d , 1 or ε , +1 — the

case when W also is trivial (i.e. W � W+1
1
) is treated separately. By Equation (4.23), the central

element C acts as multiplication by the constant cd,ε = ε(q
d + q−d)/(q− q−1)2 onW. On the quotient

V/W it acts as c1,1 = (q + q−1)/(q − q−1)2. Therefore

1

cd,ε − c1,1

(

C − c1,1 idV

)

is a projection toWwhich is also anUq(sl2)-modulemap. This implies thatW has a complementary
submodule Ker (C − c1,1 id).

The case when both W and V/W are trivial has to be treated separately, but it is very easy to
show that in this caseV is a trivial 2-dimensional representation and any complementary subspace
toW is a complementary submodule. �

Corollary 24. For q not a root of unity, the algebraUq(sl2) is semisimple.

Proof. Use Proposition 20, Remark 3 and Lemma 23. �

Solutions to YBE from infinite dimensional Drinfeld doubles

Let us pause for a moment to see where we are in finding solutions to the Yang-Baxter equa-
tion, Equation (4.10). The overall story goes smoothly — by Theorem 6 any representation of any
braidedHopf algebra gives us a solution of YBE, and by Theorem 10 the Drinfeld double construc-
tion produces braided Hopf algebras. We have even concretely described an interesting Drinfeld
double Dq2 and a quotientUq(sl2) of it, and we have found all their irreducible representations in
Theorems 17 and 18.

There is just one issue — to obtain the universal R-matrix which makes the Drinfeld double
a braided Hopf algebra, we had to assume finite dimensionality of the Hopf algebra whose
Drinfeld double we take. Unfortunately, the Hopf algebra Dq2 is a Drinfeld double of the infinite
dimensional building block Hopf algebra Hq2 , so we seem to have a small problem.

Although we can’t properly make Dq2 andUq(sl2) braided Hopf algebras, in that we will not
really find a universal R-matrix in the second tensor power of these algebras, we can nevertheless
find solutions of the Yang-Baxter equation by more or less the same old receipe. Let us first
describe the heuristics, and then prove the main result, and finally give example applications with
the representations of Dq2 andUq(sl2).

Heuristics and formula for the R-matrices

Assume that A is a Hopf algebra with invertible antipode, and D = D(A,A◦) is the Drinfeld
double. Recall that D = A ⊗ A◦ as a vector space, and the Hopf algebras A and (A◦)cop are
embedded toD by the maps

ιA : A→D ιA◦ : A
◦ →D

a 7→ a ⊗ 1∗ ϕ 7→ 1 ⊗ ϕ.

We would like to set, as in Theorem 10,

R
?
=

∑

α

ιA(eα) ⊗ ιA◦(δα), (4.26)

where (eα) is a basis of A, and (δα) is a “dual basis” of A◦. This is of course problematic in the
infinite dimensional case.
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Let us first fix some notation. Since A embeds to D as a Hopf algebra, we can consider
restrictions on A of elements φ ∈ D◦ of the restricted dual of the Drinfeld double: define φ|A ∈ A◦
by

〈φ|A, a〉 = 〈φ, ιA(a)〉 for all a ∈ A.
Furthermore, since A◦ embeds toD, we can interpret the above as an element ofD. We define

φ′ = ιA◦(φ|A) ∈ D for any φ ∈ D◦. (4.27)

If the bases (eα) and (δα) were to be dual to each other, we would expect a formula of the type
∑

α

〈ϕ, eα〉 δα
?
= ϕ

to hold for any ϕ ∈ A◦. So in particular when ϕ = φ|A, we expect
∑

α

〈φ|A, eα〉 ιB(δα)
?
= ιB(φ|A) = φ′.

Returning to the heuristic formula (4.26) for the universal R-matrix ofD, let us consider how
it would act on representations. If V is a D-module with basis (v j)

d
j=1

and representative forms

λi, j ∈ D◦ such that

x.v j =

d∑

i=1

〈λi, j, x〉 vi for any x ∈ D

we would like to make the R-matrix act on V ⊗ V by

R(vi ⊗ v j)
?
=

∑

α

ιA(eα).vi ⊗ ιA◦(δα).v j

?
=

∑

α

d∑

l,k=1

〈λl,i, ιA(eα)〉
︸       ︷︷       ︸

=〈λl,i|A ,eα〉

〈λk, j, ιA◦(δ
α)〉 vl ⊗ vk

?
=

d∑

l,k=1

〈λk, j, (λl,i)
′〉 vl ⊗ vk.

Wehave found a formula that is expressed only in terms of the representative forms, and therefore
it is meaningful also when A is infinite dimensional. We are mostly using Ř = SV,V ◦ R, so the
appropriate definitions are

Ř :V ⊗ V → V ⊗ V Ř(vi ⊗ v j) =

d∑

k,l=1

rk,l
i, j

vk ⊗ vl

rk,l
i, j
= 〈λk, j, (λl,i)

′〉. (4.28)

Proving that the formula gives solutions to YBE

We now check that Equation (4.28) indeed works. We record a small lemma, which is needed
along the way.

Lemma 25. For any φ ∈ D◦ and x ∈ D, the following equality holds inD
∑

(φ)

∑

(x)

〈φ(1), x(2)〉 x(1)(φ(2))
′
=

∑

(φ)

∑

(x)

〈φ(2), x(1)〉 (φ(1))
′x(2).

When x = ψ′ with ψ ∈ D◦ we have
∑

(φ),(psi)

〈φ(1), (ψ(1))
′〉 (ψ(2))

′ (φ(2))
′
=

∑

(φ),(ψ)

〈φ(2), (ψ(2))
′〉 (φ(1))

′(ψ(1))
′.

28



Lecture sketch: “Hopf algebras and representations” Kalle Kytölä

Proof. The proof of the first statement is an exercise. The second statement follows as a particular
case of the first, when we observe that for x = ψ′ the coproduct of x can be written in terms of the
coproduct of ψ as

∑

(x)

x(1) ⊗ x(2) = ∆D(x) = ∆D(ιA◦(ψ|A)) = (ιA◦ ⊗ ιA◦)((µ∗)cop(ψ|A)) =
∑

(ψ)

(ψ(2))
′ ⊗ (ψ(1))

′.

�

Theorem 26. Let A be a Hopf algebra with invertible antipode and B ⊂ A◦ a Hopf subalgebra of the
restricted dual, and let D = D(A,B) be the Drinfeld double associated to A and B. Let V be a D-module
with basis (v j)

d
j=1

, and assume that the representative forms λi, j ∈ D◦ satisfy λi, j|A ∈ B. Then the linear

map Ř : V⊗V → V⊗V defined by Equation (4.28) satisfies the Yang-Baxter equation (4.10). Furthermore,
the associated braid group representation on V⊗n commutes with the action ofD.

Proof. The proof is a direct calculation — besides the definitions, the key properties to keep in
mind are the coproduct formula of representative forms µ∗(λi, j) =

∑

k λi,k ⊗ λk, j and the formulas
of Lemma 25. Let us take an elementary tensor vs ⊗ vt ⊗ vu ∈ V ⊗ V ⊗ V. Applying the left hand
side of the YBE on this, we get

Ř12 ◦ Ř23 ◦ Ř12(vs ⊗ vt ⊗ vu)

=

∑

i, j,k,l,m,n

rl,m
i,k

rk,n
j,u

r
i, j
s,t vl ⊗ vm ⊗ vn

=

∑

i, j,k,l,m,n

〈λl,k, (λm,i)
′〉 〈λk,u, (λn, j)

′〉 〈λi,t, (λ j,s)
′〉 vl ⊗ vm ⊗ vn

=

∑

i, j,l,m,n

〈λl,u, (λm,i)
′(λn, j)

′〉 〈λi,t, (λ j,s)
′〉 vl ⊗ vm ⊗ vn

=

∑

l,m,n

∑

(λm,t),(λn,s)

〈λl,u, ((λm,t)(1))
′((λn,s)(1))

′〉 〈(λm,t)(2), ((λn,s)(2))
′〉 vl ⊗ vm ⊗ vn,

where in the last two steps we used the coproduct formula for representative forms. Similarly, the
right hand side of the YBE takes the value

Ř23 ◦ Ř12 ◦ Ř23(vs ⊗ vt ⊗ vu)

=

∑

i, j,k,l,m,n

rm,n
k, j

rl,k
s,i
r
i, j
t,u vl ⊗ vm ⊗ vn

=

∑

i, j,k,l,m,n

〈λm, j, (λn,k)
′〉 〈λl,i, (λk,s)

′〉 〈λi,u, (λ j,t)
′〉 vl ⊗ vm ⊗ vn

=

∑

j,k,l,m,n

〈λm, j, (λn,k)
′〉 〈λl,u, (λk,s)

′(λ j,t)
′〉 vl ⊗ vm ⊗ vn

=

∑

l,m,n

∑

(λm,t),(λn,s)

〈(λm,t)(1), ((λn,s)(1))
′〉 〈λl,u, ((λn,s)(2))

′((λm,t)(2))
′〉 vl ⊗ vm ⊗ vn.

The equality of the two sides of the Yang-Baxter equation then follows from the second formula
of Lemma 25 above.

To prove that the associated braid group representation commutes with the action of D, it
is enough to show that on V ⊗ V the matrix Ř commutes with the action of D. Let x ∈ D, and
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calculate on elementary tensors

x.
(

Ř(vi ⊗ v j)
)

= x.
(∑

k,l

〈λk, j, (λl,i)
′〉 vk ⊗ vl

)

=

∑

(x)

∑

k,l

〈λk, j, (λl,i)
′〉

(

x(1).vk ⊗ x(2).vl
)

=

∑

(x)

∑

k,l,m,n

〈λk, j, (λl,i)
′〉 〈λm,k, x(1)〉 〈λn,l, x(2)〉 vm ⊗ vn

=

∑

(x)

∑

l,m,n

〈λm, j, x(1) (λl,i)
′〉 〈λn,l, x(2)〉 vm ⊗ vn

=

∑

(x)

∑

(λn,i)

∑

m,n

〈λm, j, x(1) ((λn,i)(2))
′〉 〈(λn,i)(1), x(2)〉 vm ⊗ vn.

This is to be compared with

Ř
(

x.(vi ⊗ v j)
)

=

∑

(x)

Ř
(

x(1).vi ⊗ x(2).v j

)

=

∑

(x)

∑

k,l

〈λk,i, x(1)〉 〈λl, j, x(2)〉 Ř(vk ⊗ vl)

=

∑

(x)

∑

k,l,m,n

〈λk,i, x(1)〉 〈λl, j, x(2)〉 〈λm,l, (λn,k)
′〉 vm ⊗ vn

=

∑

(x)

∑

k,m,n

〈λk,i, x(1)〉 〈λm, j, (λn,k)
′ x(2)〉 vm ⊗ vn

=

∑

(x)

∑

(λn,i)

∑

m,n

〈(λn,i)(2), x(1)〉 〈λm, j, ((λn,i)(1))
′ x(2)〉 vm ⊗ vn.

The two expressions agree by virtue of Lemma 25. �
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