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3 Algebras, coalgebras, bialgebras and Hopf algebras

Here we first define the algebraic structures to be studied in the rest of the course.

Algebras

By the standard definition, an algebra (which for us will mean an associative unital algebra) is
a triple (A, ◦, 1A), where A is a vector space (over a field K, usually K = C) and ◦ is a binary
operation on A

◦ : A × A→ A (a, b) 7→ a ◦ b

and 1A is an element of A such that the following hold:

“Bilinearity”: the map ◦ : A × A→ A is bilinear

“Associativity”: a1 ◦ (a2 ◦ a3) = (a1 ◦ a2) ◦ a3 for all a1, a2, a3 ∈ A

“Unitality”: for all a ∈ A we have a ◦ 1A = a = 1A ◦ a

We usually omit the notation for the binary operation ◦ and write simply ab := a ◦ b. The
algebra is said to be commutative if ab = ba for all a, b ∈ A.

We usually abbreviate and write only A for the algebra (A, ◦, 1A). An algebra (A, ◦, 1A) is said
to be finite dimensional if theK-vector space A is finite dimensional.

For an element a ∈ A, a left inverse of a is an element a′ such that a′ a = 1A and a right inverse
of a is an element a′′ such that a a′′ = 1A. An element is said to be invertible if it has both left and
right inverses. In such a case the two have to be equal since a′′ = 1A a′′ = a′ a a′′ = a′ 1A = a′, and
we denote by a−1 the (left and right) inverse of a. These trivial properties will come in handy a bit
later.

Similarly, the unit 1A is uniquely determined by the unitality property.

Example 1. Any fieldK is an algebra over itself (and moreover commutative).

Example 2. The algebra of polynomials (with coefficients inK) in one indeterminate x is denoted by

K[x] :=
{
c0 + c1x + c2x2 + · · · + cnxn

∣∣∣ n ∈N, c0, c1, . . . , cn ∈ K
}
.

The product is the usual product of polynomials (commutative).

Example 3. Let V be a vector space and End(V) = Hom(V,V) = {T : V → V linear} the set of endo-
morphisms of V. Then End(V) is an algebra, with composition of functions as the binary operation, and
the identity map idV as the unit. When V is finite dimensional, dim (V) = n, and a basis of V has been
chosen, then End(V) can be identified with the algebra of n× n matrices, with matrix product as the binary
operation.

Example 4. For G a group, let K[G] be the vector space with basis (eg)g∈G and define the product by
bilinearly extending

eg eh = egh.

Then,K[G] is an algebra called the group algebra of G, the unit is ee, where e ∈ G is the neutral element of
the group.

Definition 1. Let (A1, ◦1, 1A1 ) and (A2, ◦2, 1A2 ) be algebras. A mapping f : A1 → A2 is said to be a
homomorphism of (unital) algebras if f is linear and f (1A1 ) = 1A2 and for all a, b ∈ A1

f (a ◦1 b) = f (a) ◦2 f (b).
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Definition 2. For A an algebra, a vector subspace A′ ⊂ A is called a subalgebra if 1A ∈ A′ and for all
a′, b′ ∈ A′ we have a′b′ ∈ A′. A vector subspace J ⊂ A is called a left ideal (resp. right ideal, resp. two-sided
ideal or simply ideal) if for all a ∈ A and k ∈ J we have ak ∈ J (resp. ka ∈ J, resp. both).

For J an ideal, the quotient vector space A/J becomes an algebra by setting

(a + J)(b + J) = ab + J

(which is well defined since the three last terms in (a + k)(b + k′) = ab + ak′ + kb + kk′, and are in the
ideal if k and k′ are).

The isomorphism theorem for algebras now states the following.

Theorem 1. Let A1 and A2 be algebras and f : A1 → A2 a homomorphism. Then

1◦) Im ( f ) := f (A1) ⊂ A2 is a subalgebra.

2◦) Ker ( f ) := f−1({0}) ⊂ A1 is an ideal.

3◦) The quotient algebra A1/Ker ( f ) is isomorphic to Im ( f ).

More precisely, there exists an injective algebra homomorphism f̄ : A1/Ker ( f ) → A2 such that the
following diagram commutes

A1
f

- A2

A1/Ker ( f )

f̄

-

π
-

,

where π : A1 → A1/Ker ( f ) is the canonical projection to the quotient, π(a) = a + Ker ( f ).

Proof. The assertions (1◦) and (2◦) are evident. For (3◦), take f̄ to be the injective linear map that
one gets from the isomorphism theorem of vector spaces applied to the present case, and notice
that it is an algebra homomorphism since

f̄
(
(a + Ker f )(b + Ker f )

)
= f̄ (ab + Ker f ) = f (ab) = f (a) f (b) = f̄ (a + Ker f ) f̄ (b + Ker f ).

�

The definition of a representation is analogous to the one for groups:

Definition 3. For A an algebra and V a vector space, a representation of A in V is an algebra homomorphism
ρ : A→ End(V).

In such a case we often call V an A-module (more precisely, a left A-module) and write
a.v = ρ(a)v for a ∈ A, v ∈ V.

Given an algebra A = (A, ◦, 1A), the opposite algebra Aop is the algebra Aop = (A, ◦op, 1A) with
the product operation reversed

a ◦op b = b ◦ a for all a, b ∈ A.

Representations of the opposite algebra correspond to right A-modules, that is, vector spaces V
with a right multiplication by elements of A which satisfy v.1A = v and (v.a).b = v.(ab) for all v ∈ V,
a, b ∈ A.

Subrepresentations (submodules), irreducible representations (simple modules), quotient
representations (quotient modules) and direct sums of representations (direct sums of modules)
are defined in the same way as before. For representations of algebras in complex vector spaces,
Schur’s lemma continues to hold and the proof is the same as before.

The most obvious example of a representation of an algebra is the algebra itself:
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Example 5. The algebra A is a left A-module by a.b = ab (for all a in the algebra A and b in the module
A), and a right A-module by the same formula (then we should read that a is in the module A and b in the
algebra A).

Also the dual of an algebra is easily equipped with a representation structure.

Example 6. The dual A∗ becomes a left A-module if we define a. f ∈ A∗ by

〈a. f , x〉 = 〈 f , xa〉

for f ∈ A∗, a, x ∈ A. Indeed, the property 1A. f = f is evident and we check

〈a.(b. f ), x〉 = 〈b. f , xa〉 = 〈 f , (xa)b〉 = 〈 f , x(ab)〉 = 〈(ab). f , x〉.

Similarly, the dual becomes a right A-module by the definition

〈 f .a, x〉 = 〈 f , ax〉

Example 7. Representations of a group G correspond to representations of the group algebraC[G]. Indeed,
given a representation of the group, ρG : G → GL(V), there is a unique linear extension of it from the
values on the basis vectors, eg 7→ ρG(g) ∈ GL(V) ⊂ End(V). The other way around, given an algebra
representation ρA : C[G] → End(V), we observe that ρA(eg) is an invertible linear map with inverse
ρA(eg−1 ), so we set g 7→ ρA(eg) to define a representation of the group. Both ways the homomorphism
property of the constructed map obviously follows from the homomorphism property of the original map.

Example 8. Let V be a vector space over K and T ∈ End(V) a linear map of V into itself. Since the
polynomial algebra K[x] is the free (commutative) algebra with one generator x, there exists a unique
algebra morphism ρT : K[x]→ End(V) such that x 7→ T, namely

ρT

(
c0 + c1x + c2x2 + · · · + cnxn

)
= c0 + c1T + c2T2 + · · · + cnTn.

Thus any endomorphism T of a vector space defines a representation ρT of the algebra K[x]. Likewise,
any n × n matrix with entries in K, interpreted as an endomorphism of Kn, defines a representation of the
polynomial algebra.

Example 9. Let V be a complex vector space, and T ∈ End(V) as above and let q(x) ∈ C[x] be a polynomial.
Consider the algebra C[x]/〈q(x)〉, where 〈q(x)〉 is the ideal generated by q(x). The above representation map
ρT : C[x]→ End(V) factors through the quotient algebra C[x]/〈q(x)〉

C[x]
ρT - End(V)

C[x]/〈q(x)〉

-

-

,

if and only if the ideal 〈q(x)〉 is contained in the ideal Ker ρT. The ideal Ker ρT is generated by the minimal
polynomial of T (recall that the polynomial algebra is a principal ideal domain: any ideal is generated
by one element, a lowest degree nonzero polynomial contained in the ideal). Thus the above factorization
through quotient is possible if and only if the minimal polynomial of T divides q(x). We conclude that the
representations of the algebraC[x]/〈q(x)〉 correspond to endomorphisms whose minimal polynomial divides
q(x) — or equivalently, to endomorphisms T such that q(T) = 0.

The Jordan decomposition of complex matrices gives a direct sum decomposition of this representation
with summands corresponding to the invariant subspaces of each Jordan block. The direct summands
are indecomposable (not themself expressible as direct sum of two proper subreprentations) but those
corresponding to blocks of size more than one are not irreducible (they contain proper subrepresentations,
for example the one dimensional eigenspace within the block). We see that whenever q(x) has roots of
multiplicity greater than one, there are representations of the algebra C[x]/〈q(x)〉 which are not completely
reducible.
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Another definition of algebra

In our definitions of algebras, coalgebras and Hopf algebras we will from here on take the ground
field to be the field C of complex numbers, although much of the theory could be developed for
other fields, too.

The following “tensor flip” will be used occasionally. For V and W vector spaces, let us denote
by SV,W the linear map that switches the components

SV,W : V ⊗W →W ⊗ V such that SV,W(v ⊗ w) = w ⊗ v ∀ v ∈ V,w ∈W.

By the bilinearity axiom for algebras, the product could be factorized through A ⊗A, namely
there exists a linear map µ : A ⊗ A→ A such that

µ(a ⊗ b) = a b ∀ a, b ∈ A.

We can also encode the unit in a linear map

η : C→ A λ 7→ λ 1A.

The axioms of associativity and unitality then read

µ ◦ (µ ⊗ idA) = µ ◦ (idA ⊗ µ) (H1)
µ ◦ (η ⊗ idA) = idA = µ ◦ (idA ⊗ η), (H2)

where (H1) expresses the equality of two maps A ⊗ A ⊗ A → A, when we make the usual
identifications

(A ⊗ A) ⊗ A � A ⊗ A ⊗ A � A ⊗ (A ⊗ A)

and (H2) expresses the equality of three maps A→ A, when we make the usual identifications

C ⊗ A � A � A ⊗ C.

We take this as our definition (it is equivalent to the standard definition).

Definition 4. An (associative unital) algebra is a triple (A, µ, η), where A is a vector space and

µ : A ⊗ A→ A η : C→ A

are linear maps, such that “associativity” (H1) and “unitality” (H2) hold.

Example 10. If (A, µ, η) is an algebra, then setting µop = µ ◦ SA,A, i.e. µop(a ⊗ b) = b a, one obtains the
opposite algebra Aop = (A, µop, η). An algebra is called commutative if µop = µ.

The axiom of associativity can also be summarized by the following commutative diagram

A ⊗ A

A ⊗ A ⊗ A

µ
⊗

idA
-

A

µ

-

A ⊗ A

µ

-
id

A
⊗
µ -

(H1)

and unitality by

C ⊗ A � A � A ⊗ C

A ⊗ A

µ

6

�
idA
⊗
ηη

⊗
id

A -

. (H2)
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Coalgebras

A coalgebra is defined by reversing the directions of all arrows in the commutative diagrams
defining algebras. Namely, we impose an axiom of “coassociativity”

C ⊗ C

C ⊗ C ⊗ C
�

∆
⊗

id C

C

�

∆

C ⊗ C
�

∆

�

id
C
⊗

∆

(H1’)

and “counitality”

C ⊗ C � C � C ⊗ C

C ⊗ C

∆

? id C
⊗
ε

-
�

ε
⊗

id
C

. (H2’)

Definition 5. A coalgebra is a triple (C,∆, ε), where C is a vector space and

∆ : C→ C ⊗ C ε : C→ C

are linear maps such that “coassociativity” (H1’) and “counitality” (H2’) hold. The maps ∆ and ε are called
coproduct and counit, respectively.

The axioms for coalgebras can also be written as

(∆ ⊗ idC) ◦ ∆ = (idC ⊗ ∆) ◦ ∆ (H1’)
(ε ⊗ idC) ◦ ∆ = idC = (idC ⊗ ε) ◦ ∆. (H2’)

Example 11. If (C,∆, ε) is a coalgebra, then with the opposite coproduct ∆cop = SC,C ◦ ∆ one obtains the
(co-)opposite coalgebra Ccop = (C,∆cop, ε). A coalgebra is called cocommutative if ∆cop = ∆.

Sweedler’s sigma notation

For practical computations with coalgebras it’s important to have manageable notational conven-
tions. We will follow what is known as the Sweedler’s sigma notation. By usual properties of the
tensor product, we can for any a ∈ C write the coproduct of a as a linear combination of simple
tensors

∆(a) =

n∑
j=1

a′j ⊗ a′′j .

In such expressions the choice of simple tensors, or the choice of a′j, a
′′

j ∈ C, or even the number n
of terms, are of course not unique! It is nevertheless convenient to keep this property in mind and
use the notation

∆(a) =
∑
(a)

a(1) ⊗ a(2)

to represent any of the possible expressions for ∆(a) ∈ C ⊗ C. Likewise, when a ∈ C, and we
write some expression involving a sum

∑
(a) and bilinear dependency on a(1) and a(2), it is to be
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interpreted so that any linear combination of simple tensors that gives the coproduct of a could
be used. For example, if g : C→ V and h : C→W are linear maps, then∑

(a)

g(a(1)) ⊗ h(a(2)) represents (g ⊗ h)(∆(a)) ∈ V ⊗W.

The opposite coproduct of Example 11 is written in this notation as

∆cop(a) = SC,C(∆(a)) =
∑
(a)

a(2) ⊗ a(1).

Another example is the counitality axiom, which reads∑
(a)

ε(a(1)) a(2) = a =
∑
(a)

ε(a(2)) a(1). (H2’)

The coassociativity axiom states that∑
(a)

∑
(a(1))

(a(1))(1) ⊗ (a(1))(2) ⊗ a(2) =
∑
(a)

∑
(a(2))

a(1) ⊗ (a(2))(1) ⊗ (a(2))(2). (H1’)

By a slight abuse of notation we write the above quantity as
∑

(a) a(1)⊗a(2)⊗a(3), and more generally
we write the n − 1-fold coproduct as

(∆ ⊗ idC ⊗ · · · ⊗ idC) ◦ . . . ◦ (∆ ⊗ idC) ◦ ∆(a) =
∑
(a)

a(1) ⊗ a(2) ⊗ · · · ⊗ a(n).

So when reading an expression involving the Sweedler’s notation
∑

(a), one should always check
what is the largest subscript index of the a( j) in order to know how many coproducts are succes-
sively applied to a — note, however, that by coassociativity it doesn’t matter to which components
we apply the coproducts.

Subcoalgebras, coideals, quotient coalgebras and isomorphism theorem

As for other algebraic structures, maps that preserve the structure are called homomorphisms,
and one can define substructures and quotient structures, and one has an isomorphism theorem.

Definition 6. Let (C j,∆ j, ε j), j = 1, 2, be two coalgebras. A homomorphism of coalgebras is linear map
f : C1 → C2 which preserves the coproduct and counit in the following sense

∆2 ◦ f = ( f ⊗ f ) ◦ ∆1 and ε2 ◦ f = ε1.

Definition 7. For C = (C,∆, ε) a coalgebra, a vector subspace C′ ⊂ C is called a subcoalgebra if

∆(C′) ⊂ C′ ⊗ C′.

A vector subspace J ⊂ C is called a coideal if

∆(J) ⊂ J ⊗ C + C ⊗ J and ε
∣∣∣
J = 0.

For J ⊂ C a coideal, the quotient vector space C/J becomes a coalgebra by the coproduct and
counit

∆C/J(a + J) =
∑
(a)

(a(1) + J) ⊗ (a(2) + J) and εC/J(a + J) = ε(a),

whose well-definedness is again due to the coideal properties of J.

The isomorphism theorem for coalgebras is the following (unsurprising) statement.
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Theorem 2. Let C1 and C2 be coalgebras and f : C1 → C2 a homomorphism of coalgebras. Then

1◦) Im ( f ) := f (C1) ⊂ C2 is a subcoalgebra.

2◦) Ker ( f ) := f−1({0}) ⊂ C1 is a coideal.

3◦) The quotient coalgebra C1/Ker ( f ) is isomorphic to Im ( f ).

More precisely, there exists an injective homomorphism of coalgebras f̄ : C1/Ker ( f ) → C2 such that the
following diagram commutes

C1
f

- C2

C1/Ker ( f )

f̄

-

π
-

,

where π : C1 → C1/Ker ( f ) is the canonical projection to the quotient, π(a) = a + Ker ( f ).

Bialgebras and Hopf algebras

Definition 8. A bialgebra is a quintuple (B, µ,∆, η, ε) where B is a vector space and

µ : B ⊗ B→ B ∆ : B→ B ⊗ B
η :C→ B ε : B→ C

are linear maps so that (B, µ, η) is an algebra, (B,∆, ε) is a coalgebra and the following further axioms hold

∆ ◦ µ = (µ ⊗ µ) ◦ (idB ⊗ SB,B ⊗ idB) ◦ (∆ ⊗ ∆) (H4)
∆ ◦ η = η ⊗ η (H5)
ε ◦ µ = ε ⊗ ε (H5’)
ε ◦ η = idC. (H6)

7
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The following commutative diagrams visualize the new axioms:

B

B ⊗ B

µ

-

B ⊗ B

∆

-

B ⊗ B ⊗ B ⊗ B

∆ ⊗ ∆

?

idB ⊗ SB,B ⊗ idB

- B ⊗ B ⊗ B ⊗ B

µ ⊗ µ

6

(H4)

B ⊗ B �
∆

B

C ⊗ C

η ⊗ η

6

� - C

η

6

B ⊗ B
µ
- B

C ⊗ C

ε ⊗ ε

?
� - C

ε

?

(H5 and H5’)
B

C � -

η

-

C

ε

-

(H6)

In the exercises it is checked that the axioms (H4), (H5), (H5’), (H6) state alternatively that
∆ and ε are homomorphisms of algebras, or that µ and η are homomorphisms of coalgebras. We
will soon also motivate this definition with properties of representations.

Hopf algebras have one more structural map and one more axiom:

Definition 9. A Hopf algebra is a sextuple (H, µ,∆, η, ε, γ), where H is a vector space and

µ : H ⊗H→ H ∆ : H→ H ⊗H
η :C→ H ε : H→ C
γ : H→ H

are linear maps such that (H, µ,∆, η, ε) is a bialgebra and the following further axiom holds

µ ◦ (γ ⊗ idH) ◦ ∆ = η ◦ ε = µ ◦ (idH ⊗ γ) ◦ ∆. (H3)

The map γ : H→ H is called antipode. The corresponding commutative diagram is

H ⊗H
idH ⊗ γ - H ⊗H

H

∆

6

ε - C
η
- H

µ

?

H ⊗H

∆

?

γ ⊗ idH

- H ⊗H

µ

6

(H3)
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To get familiar with the Sweedler’s sigma notation we rewrite the axiom concerning the
antipode as follows ∑

(a)

γ(a(1)) a(2) = ε(a) 1H =
∑
(a)

a(1) γ(a(2)) ∀ a ∈ H, (H3)

where 1H = η(1) is the unit of the algebra (H, µ, η) and we use the usual notation for products in
the algebra, a b := µ(a ⊗ b).

Example 12. The group algebra C[G] of a group G becomes a Hopf algebra with the definitions

∆(eg) = eg ⊗ eg , ε(eg) = 1 , γ(eg) = eg−1 (extended linearly).

We call this Hopf algebra the Hopf algebra of the group G, and continue to use the notation C[G] for it.

Example 13. The algebra of polynomials C[x] becomes a Hopf algebra with the definitions

∆(xn) =

n∑
k=0

(
n
k

)
xk
⊗ xn−k , ε(xn) = δn,0 , γ(xn) = (−1)n xn (extended linearly),

where (
n
k

)
=

n!
k! (n − k)!

are the binomial coefficients, and we’ve used the Kronecker delta symbol

δn,m =

{
1 if n = m
0 if n , m .

Motivated by the above examples, we give names to some elements whose coproduct resem-
bles one of the two examples.

Definition 10. Let (C,∆, ε) be a coalgebra. A non-zero element a ∈ C is said to be grouplike if ∆(a) = a⊗a.
Let (B, µ,∆, η, ε) be a bialgebra. A non-zero element x ∈ B is said to be primitive if ∆(x) = x⊗ 1B + 1B ⊗ x.

All the basis vectors eg, g ∈ G, in the Hopf algebra C[G] of a group G are grouplike. Any
scalar multiple of the indeterminate x in the binomial Hopf algebra C[x] is primitive. Here’s one
more obvious example:

Example 14. If (B, µ, η,∆, ε) is a bialgebra, then the unit 1B = η(1) ∈ B is grouplike by the property (H5).

Lemma 3. Let (B, µ, η,∆, ε) be a bialgebra. Then

• for any grouplike element a ∈ B we have ε(a) = 1

• for any primitive element x ∈ B we have ε(x) = 0.

If B furthermore admits a Hopf algebra structure with the antipode γ : B→ B then

• any grouplike element a ∈ B is invertible and we have γ(a) = a−1

• for any primitive element x ∈ B we have γ(x) = −x.
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Motivation for the definitions from representations

Recall that for a finite group we were able not only to take direct sums of representations, but also
we made the tensor product of representations a representation, the one dimensional vector space
a trivial representation, and the dual of a representation a representation.

Suppose now A is an algebra and ρV : A→ End(V) and ρW : A→ End(W) are representations
of A in V and W, respectively. Taking direct sums of the representations works just like before:
we set

a.(v + w) = ρV(v) + ρW(w) for all v ∈ V ⊂ V ⊕W and w ∈W ⊂ V ⊕W.

It seems natural to ask how to take tensor products of representations of algebras, and the
answer is that one needs some extra structure. In fact, the coproduct ∆ : A → A ⊗ A with the
axioms (H4) and (H5) precisely guarantees that the formula (ρV ⊗ρW) ◦∆ defines a representation
of A on V ⊗W. With Sweedler’s sigma notation this reads

a.(v ⊗ w) =
∑
(a)

(a(1).v) ⊗ (a(2).w) for v ∈ V, w ∈W. (3.1)

In particular, using the coproduct of Example 12 this definition coincides with the definition of
tensor product representation we gave for groups.

Can we make the ground fieldC a trivial representation? Indeed, when we interpret End(C) �
C, identifying a linear map C → C with its sole eigenvalue, a map ε : A → C becomes a one
dimensional representation if and only if the axioms (H5’) and (H6) hold. So when we have a
counit ε we set

a.λ = ε(a)λ ∈ C for λ ∈ C, (3.2)

and call this the trivial representation. Again, using the counit of Example 12, the trivial represen-
tation of a group is what we defined it to be before.

Exercise 1. Check that the formulas (3.1) and (3.2) define representations if we assume the axioms men-
tioned. Check also that with the Hopf algebra structure on C[G] given in Example 12, these definitions
agree with the corresponding representations of groups.

How about duals then? For any representation V we’d like to make V∗ = Hom(V,C) a
representation. Recall also that under finite dimensionality assumption Hom(V,W) � W ⊗ V∗,
so since we already know how to handle tensor product representations with the coproduct, we
might in fact hope to make the space of linear maps between representations a representation.
When we have an antipode satisfying (H3), the formula

a.T =
∑
(a)

ρW(a(1)) ◦ T ◦ ρV(γ(a(2)))

turns out to work, as we will see a bit later. Again, the antipode of Example 12 leads to the
definitions we gave for groups.

Although we have given a representation theoretic interpretation for the coproduct ∆, the
counit ε, and the antipode γ, so far we didn’t use axioms (H1’) and (H2’) of a coalgebra. It is easy
to see, however, that the canonical linear isomorphism between the triple tensor products

(V1 ⊗ V2) ⊗ V3 and V1 ⊗ (V2 ⊗ V3)

becomes an isomorphism of representations with the definition (3.1) when coassociativity (H1’) is
imposed. Likewise, the canonical identifications of V with

V ⊗ C and C ⊗ V

become isomorphisms of representations with the definition (3.2) when counitality (H2’) is im-
posed.

10
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Thus we see that the list of nine axioms (H1), (H1’), (H2), (H2’), (H3), (H4), (H5), (H5’), (H6)
is very natural in view of standard operations that we want to perform for representations.

One more remark is in order: the “flip”

SV,W : V ⊗W →W ⊗ V v ⊗ w 7→ w ⊗ v

gives a rather natural vector space isomorphism between V⊗W and W⊗V. With the definition (3.1),
it would be an isomorphism of representations if we required the coproduct to be cocommutative,
i.e. that the coproduct ∆ is equal to the opposite coproduct ∆cop := SA,A ◦ ∆. However, we choose
not to require cocommutativity in general — in fact the most interesting examples of Hopf algebras
are certain quantum groups, where instead of “flipping” the factors of tensor product by SV,W we
can do “braiding” on the factors. We will return to this point later on in the course.

The dual of a coalgebra

When f : V →W is a linear map, its transpose is the linear map f ∗ : W∗
→ V∗ given by

〈 f ∗(ϕ), v〉 = 〈ϕ, f (v)〉 for all ϕ ∈W∗, v ∈ V.

Recall also that we have the inclusion V∗ ⊗W∗
⊂ (V ⊗W∗) with the interpretation

〈ψ ⊗ ϕ, v ⊗ w〉 = 〈ψ, v〉 〈ϕ,w〉 for ψ ∈ V∗, ϕ ∈W∗, v ∈ V, w ∈W,

and observe that the dual of the ground field can be naturally identified with the ground field
itself

C∗ � C via C∗ 3 φ ↔ 〈φ, 1〉 ∈ C.

Theorem 4. Let C be a coalgebra, with coproduct ∆ : C→ C ⊗ C and counit ε : C→ C. Set A = C∗ and

µ = ∆∗
∣∣∣
C∗⊗C∗ : A ⊗ A→ A , η = ε∗ : C→ A.

Then (A, µ, η) is an algebra.

Proof. Denote 1A = η(1). Compute for ϕ ∈ C∗ = A and c ∈ C, using (H2’) in the last step,

〈ϕ 1A, c〉 = 〈ϕ ⊗ 1A,∆(c)〉 =
∑
(c)

〈ϕ, c(1)〉 〈1A, c(2)〉 = 〈ϕ,
∑
(c)

c(1)ε(c(2))〉 = 〈ϕ, c〉

to obtain ϕ 1A = ϕ. Similarly one proves 1A ϕ = ϕ and gets unitality for A. Associativity of µ = ∆∗

is also easy to show using the coassociativity (H2’) of ∆. �

Convolution algebras

One of the main goals of this section is to prove the following facts about the antipode.

Theorem 5. Let H = (H, µ,∆, η, ε, γ) be a Hopf algebra.

(!) The antipode γ is unique.

(i) The map γ : H→ H is a homomorphism of algebras from H = (H, µ, η) to Hop = (H, µop, η).

(ii) The map γ : H→ H is a homomorphism of coalgebras from H = (H,∆, ε) to Hcop = (H,∆cop, ε).

In other words the property (i) says that we have γ(1H) = 1H and

γ(a b) = γ(b)γ(a) ∀a, b ∈ H.

The property (ii) says that we have

γ(∆(a)) =
∑
(a)

γ(a(2))γ(a(1)) and ε(γ(a)) = ε(a) ∀a ∈ H.

11
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Definition 11. Let C = (C,∆, ε) be a coalgebra and A = (A, µ, η) an algebra. For f , g linear maps C→ A
define the convolution product of f and g as the linear map

f ? g = µ ◦ ( f ⊗ g) ◦ ∆ : C→ A,

and the convolution unit 1? as the linear map

1? = η ◦ ε : C→ A.

The convolution algebra associated with C and A is the vector space Hom(C,A) equipped with product ?
and unit 1?. The convolution algebra of a bialgebra B = (B, µ,∆, η, ε) is the convolution algebra associated
with the coalgebra (B,∆, ε) and the algebra (B, µ, η), and the convolution algebra of a Hopf algebra is defined
similarly.

Proposition 6. The convolution algebra is an associative unital algebra.

Sketch of a proof. Associativity for the convolution algebra follows easily from the associativity
of A and coassociativity of C, and unitality of the convolution algebra follows easily from the
unitality of A and counitality of C. �

Concolution algebras have applications for example in combinatorics. For now, we will use
them to prove properties of the antipode.

Proof of Theorem 5. Let us first prove the uniqueness (!). By (H3), the antipode γ ∈ Hom(H,H) is
the two-sided convolutive inverse of idH ∈ Hom(H,H) in the convolution algebra of the Hopf
algebra H, that is we have

γ ? idH = 1? = idH ? γ.

In an associative algebra a left inverse has to coincide with a right inverse if both exist. Indeed
suppose that γ′ would also satisfy (H3) so that in particular idH ? γ′ = 1?. Then we compute

γ = γ ? 1? = γ ? (idH ? γ
′) = (γ ? idH) ? γ′ = 1? ? γ′ = γ′.

Then let us prove (i): the antipode is a homomorphism of algebras to the opposite algebra.
We must show that the antipode preserves the unit, γ ◦ η = η, and that it reverses the product,
γ ◦ µ = µop

◦ (γ ⊗ γ). Preserving unit is easily seen: recall that 1H is grouplike, ∆(1H) = 1H ⊗ 1H
and then apply (H3) to 1H to see that

1H
(H3)
=

(
µ ◦ (γ ⊗ idH)

)
(1H ⊗ 1H)) = γ(1H) 1H

(H2)
= γ(1H).

Now consider the convolution algebra Hom(H ⊗H,H) associated with the coalgebra H ⊗H with
coproduct and counit as follows

∆2(a ⊗ b) =
∑
(a),(b)

a(1) ⊗ b(1) ⊗ a(2) ⊗ b(2) =
(
(idH ⊗ SH,H ⊗ idH) ◦ (∆ ⊗ ∆)

)
(a ⊗ b)

ε2(a ⊗ b) = ε(a) ε(b)

and with the algebra H = (H, µ, η). Note that we can write ∆2 = (idH ⊗ SH,H ⊗ idH) ◦ (∆ ⊗ ∆) and
ε2 = ε ⊗ ε. We will show (a) that µ ∈ Hom(H ⊗H,H) has a right convolutive inverse γ ◦ µop, and
(b) that µ has a left convolutive inverse µ ◦ (γ ⊗ γ). To prove (a), compute for a, b ∈ H

µ ? (γ ◦ µ) = µ ◦
(
µ ⊗ (γ ◦ µ)

)
◦ ∆2

= µ ◦ (idH ⊗ γ) ◦ (µ ⊗ µ) ◦ (idH ⊗ SH,H ⊗ idH) ◦ (∆ ⊗ ∆)
(H4)
= µ ◦ (idH ⊗ γ) ◦ ∆ ◦ µ

(H3)
= η ◦ ε ◦ µ

(H5’)
= η ◦ (ε ⊗ ε) = η ◦ ε2 = 1?

12
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To prove (b), compute in the Sweedler’s sigma notation((
µ ◦ SH,H ◦ (γ ⊗ γ)

)
? µ

)
(a ⊗ b) =

∑
(a),(b)

(
γ(b(1))γ(a(1))

) (
a(2) b(2)

)
(H3) for a

= ε(a)
∑
(b)

γ(b(1)) 1H b(2)

(H3) for b
= ε(a)ε(b) 1H,

which is the value of 1? = η ◦ ε2 on the element a ⊗ b. Now a right inverse of µ has to coincide
with a left inverse of µ, so we get

γ ◦ µ = µ ◦ SH,H ◦ (γ ⊗ γ),

as we wanted.

We leave it as an exercise for the reader to prove (ii) by finding appropriate formulas for right
and left inverses of ∆ in the convolution algebra Hom(H,H ⊗H). �

Corollary 7. For H = (H, µ,∆, η, ε, γ) a Hopf algebra, V and W representations of (H, µ, η), the space
Hom(V,W) of linear maps between the representations becomes a representation by the formula(

a.T
)
(v) =

∑
(a)

a(1).
(
T(γ(a(2)).v)

)
for a ∈ H, T ∈ Hom(V,W), v ∈ V.

Proof. The property 1H.T = T is obvious in view of ∆(1H) = 1H ⊗ 1H and γ(1H) = 1H. Using the
facts that γ : H→ Hop and ∆ : H→ H ⊗H are homomorphisms of algebras, we also check(

a.(b.T)
)
(v) =

∑
(a)

a(1).
(
(b.T)(γ(a(2)).v)

)
=

∑
(a),(b)

a(1).b(1).
(
T(γ(b(2))γ(a(2)).v)

)
γ homom.

=
∑
(a),(b)

(a(1)b(1)).
(
T(γ(a(2)b(2)).v)

)
∆ homom.

=
∑
(ab)

(ab)(1).
(
T(γ((ab)(2)).v)

)
=

(
(ab).T)

)
(v).

�

Corollary 8. Suppose that H = (H, µ,∆, η, ε, γ) is a Hopf algebra which is either commutative or cocom-
mutative. Then the antipode is involutive, that is γ ◦ γ = idH.

Proof. Assume that A is commutative. Now, since γ is a morphism of algebras A→ Aop we have

γ2 ? γ = µ ◦ (γ2
⊗ γ) ◦ ∆

= γ ◦ µop
◦ (γ ⊗ idA) ◦ ∆

= γ ◦ µ ◦ (γ ⊗ idA) ◦ ∆

= γ ◦ η ◦ ε = η ◦ ε = 1?.

We conclude that γ2 is a left inverse of γ in the convolution algebra (one could easily show that
γ2 is in fact a two-sided inverse). But idA is a right (in fact two-sided) inverse of γ, and as usually
in associative algebras we therefore get γ2 = idA. The case of a cocommutative Hopf algebra is
handled similarly. �

Above we showed that the antipode is an involution if the Hopf algebra is commutative or
cocommutative. The cocommutativity ∆(x) = ∆cop(x) will later be generalized a little: braided
Hopf algebras have ∆(x) and ∆cop(x) conjugates of each other and we will show that the antipode
is always invertible in such a case. We will also later show that the antipode of a finite dimensional
Hopf algebra is always invertible. The following exercise characterizes invertibility of the antipode
in terms of the existence of antipodes for the opposite and co-opposite bialgebras.

13
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Exercise 2. “Opposite and co-opposite bialgebras and Hopf algebras”
Suppose that A = (A, µ,∆, η, ε) is a bialgebra. Letµop = µ◦SA,A be the opposite product and ∆cop = SA,A◦∆
be the (co-)opposite coproduct.

(a) Show that all of the following are bialgebras:

- the opposite bialgebra Aop = (A, µop,∆, η, ε)

- the co-opposite bialgebra Acop = (A, µ,∆cop, η, ε)

- the opposite co-opposite bialgebra Aop,cop = (A, µop,∆cop, η, ε).

Suppose furthermore that γ : A→ A satisfies (H3) so that (A, µ,∆, η, ε, γ) is a Hopf algebra.

(b) Show that Aop,cop = (A, µop,∆cop, η, ε, γ) is a Hopf algebra, called the the opposite co-opposite Hopf
algebra.

(c) Show that the following conditions are equivalent

- the opposite bialgebra Aop admits an antipode γ̃
- the co-opposite bialgebra Acop admits an antipode γ̃
- the antipode γ : A→ A is an invertible linear map, with inverse γ̃.

Representative forms

Let A = (A, µ, η) be an algebra.

Suppose that V is a finite dimensional A-module, and that u1,u2, . . . ,un is a basis of V. Note
that for any a ∈ A we can write a.u j =

∑n
i=1 λi, j ui with λi, j ∈ C, i, j = 1, 2, . . . ,n. The coefficients

depend on a lineary and thus define elements of the dual λi, j ∈ A∗ called the representative forms
of the A-module V with respect to the basis u1,u2, . . . ,un. The left multiplication of the basis
vectors by elements of A now takes the form

a.u j =

n∑
i=1

〈λi, j, a〉 ui.

The A-module property gives

n∑
i=1

〈λi, j, ab〉 ui = (ab).v = a.(b.v) =

n∑
i,k=1

〈λi,k, a〉 〈λk, j, b〉 ui,

that is

〈λi, j, ab〉 =

n∑
k=1

〈λi,k, a〉 〈λk, j, b〉 for all i, j = 1, 2, . . . ,n. (3.3)

The restricted dual of algebras and Hopf algebras

Recall that for C a coalgebra, the dual space C∗ becomes an algebra with the structural maps
(product and unit) which are the transposes of the structural maps (coproduct and counit) of the
coalgebra.

It then seems natural to ask whether the dual of an algebra A = (A, µ, η) is a coalgebra. When
we take the transposes of the structural maps

η : C→ A and µ : A ⊗ A→ A,

14
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we get
η∗ : C∗ → A∗

which could serve as a counit when we identify C∗ � C, but the problem is that the candidate for
a coproduct

µ∗ : A∗ → (A ⊗ A)∗ ⊃ A∗ ⊗ A∗,

takes values in the space (A ⊗ A)∗ which in general is larger than the second tensor power of the
dual, A∗ ⊗A∗. The cure to the situation is to restrict attention to the preimage of the second tensor
power of the dual.

Definition 12. The restricted dual of an algebra A = (A, µ, η) is the subspace A◦ ⊂ A∗ defined as

A◦ = (µ∗)−1(A∗ ⊗ A∗).

Example 15. Let V be a finite dimensional A-module with basis u1,u2, . . . ,un, and denote by λi, j ∈ A∗,
i, j = 1, 2, . . . ,n, the representative forms. Then from Equation (3.3) we get for any a, b ∈ A

〈µ∗(λi, j), a ⊗ b〉 = 〈λi, j, µ(a ⊗ b)〉 = 〈λi, j, ab〉 =

n∑
k=1

〈λi,k, a〉 〈λk, j, b〉 =

n∑
k=1

〈λi,k ⊗ λk, j, a ⊗ b〉.

We conclude that

µ∗(λi, j) =

n∑
k=1

λi,k ⊗ λk, j ∈ A∗ ⊗ A∗, (3.4)

and therefore λi, j ∈ A◦.

The example shows that all representative forms of finite dimensional A-modules are in the
restricted dual, and we will soon see that the restricted dual is spanned by these.

The goal of this section is to prove the following results.

Theorem 9. For A = (A, µ, η) an algebra, the restricted dual (A◦, µ∗|A◦ , η∗|A◦ ) is a coalgebra.

Theorem 10. For H = (H, µ,∆, η, ε, γ) a Hopf algebra, the restricted dual

(H◦,∆∗|H◦×H◦ , µ
∗
|H◦ , ε

∗, η∗|H◦ , γ
∗
|A◦ )

is a Hopf algebra.

Before starting with the proofs, we need some preparations.

Lemma 11. Let A = (A, µ, η) be an algebra and equip the dual A∗ with the left A-module structure of
Example 6. Then for any f ∈ A∗ we have

f ∈ A◦ ⇔ dim (A. f ) < ∞,

where A. f ⊂ A∗ is the submodule generated by f .

In other words, the elements of the restricted dual are precisely those that generate a finite
dimensional submodule of A∗.

Remark 1. Observe that A◦ = (µ∗)−1(A∗ ⊗A∗) = ((µop)∗)−1(A∗ ⊗A∗). Thus the analogous property holds
for the right A-module structure of Example 6: we have f ∈ A◦ if and only if f .A ⊂ A∗ is finite dimensional.

Proof of Lemma 11. Suppose first that f ∈ A◦, so that µ∗( f ) =
∑n

i=1 gi ⊗ hi, for some n ∈ N and
gi, hi ∈ A∗, i = 1, 2, . . . ,n. Then for any a, x ∈ A we get〈

a. f , x
〉

=
〈

f , xa
〉

=
〈

f , µ(x ⊗ a)
〉

=
〈
µ∗( f ), x ⊗ a

〉
=

n∑
i=1

〈
gi ⊗ hi, x ⊗ a

〉
=

n∑
i=1

〈
gi, x

〉 〈
hi, a

〉
=

〈 n∑
i=1

〈
hi, a

〉
gi, x

〉
.

15
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This shows that

a. f =

n∑
i=1

〈
hi, a

〉
gi

and thus A. f is contained in the linear span of g1, . . . , gn, and in particular A. f is finite dimensional.

Suppose then that dim (A. f ) < ∞. Let (gi)r
i=1 be a basis of A. f , and observe that writing a. f in

this basis we get a. f =
∑r

i=1

〈
hi, a

〉
gi for some hi ∈ A∗, i = 1, 2, . . . , r. We can then compute for any

x, y ∈ A 〈
µ∗( f ), x ⊗ y

〉
=

〈
f , xy

〉
=

〈
y. f , x

〉
=

∑
i

〈
hi, y

〉 〈
gi, x

〉
to conclude that µ∗( f ) =

∑r
i=1 gi ⊗ hi ∈ A∗ ⊗ A∗. �

It follows from the proof that for f ∈ A◦, the rank of µ∗( f ) ⊂ A∗ ⊗A∗ is equal to the dimension
of A. f . We in fact easily see that when µ∗( f ) =

∑r
i=1 gi ⊗ hi ∈ A∗ ⊗ A∗ with r minimal, then (gi)r

i=1 is
a basis of A. f and (hi)r

i=1 is a basis of f .A.

Corollary 12. If f ∈ A◦, then we have µ∗( f ) ⊂ (A. f ) ⊗ ( f .A) ⊂ A◦ ⊗ A◦ and therefore

µ∗(A◦) ⊂ A◦ ⊗ A◦.

Proof. In the above proof we’ve written µ∗( f ) =
∑

i gi ⊗ hi with gi ∈ A. f and hi ∈ f .A, so the first
inclusion follows. But we clearly have also A. f ⊂ A◦ since for any a ∈ A the submodule of A∗

generated by the element a. f is contained in A. f , and is therefore also finite dimensional. Similarly
one gets f .A ⊂ A◦. �

We observe the following.

Corollary 13. The restricted dual A◦ is spanned by the representative forms of finite dimensional A-
modules.

Proof. In Example 15 we have seen that the representative forms are always in the restricted dual.
We must now show that any f ∈ A◦ can be written as a linear combination of representative forms.
To this end we consider the finite dimensional submodule A. f of A∗. Let (gi)n

i=1 be a basis of A. f ,
and assume without loss of generality that g1 = f and gi = bi. f with bi ∈ A, i = 1, 2, . . . ,n.

As above we observe that there exists (hi)n
i=1 in A∗ such that a. f =

∑n
i=1

〈
hi, a

〉
gi for all a ∈ A.

We compute

a.g j = (a b j). f =

n∑
i=1

〈
hi, a b j

〉
gi =

n∑
i=1

〈
b j.hi, a

〉
gi,

so that the representative forms of A. f in the basis (gi) are λi, j = b j.hi. In particular since b1 = 1A
we have hi = λi,1. It therefore suffices to show that f can be written as a linear combination of the
elements hi. But this is evident, since the (right) submodule f .A of A∗ contains f and is spanned
by (hi). �

We may write the conclusion above even more concretely as

f = f .1A =
∑

i

〈
gi, 1A

〉
hi =

∑
i

〈
gi, 1A

〉
λi,1.

Proof of Theorem 9. From Corollary 12 we see that we can interpret the structural maps as maps
between the correct spaces,

∆ = µ∗
∣∣∣
A◦ : A◦ → A◦ ⊗ A◦ and ε = η∗

∣∣∣
A◦ : A◦ → C.
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To prove counitality, take f ∈ A◦ and write as before ∆( f ) = µ∗( f ) =
∑

i gi ⊗ hi, and compute for
any x ∈ A

〈(ε ⊗ idA◦ )(∆( f )), x〉 =
∑

i

ε(gi) 〈hi, x〉 =
∑

i

〈gi, 1A〉 〈hi, x〉 = 〈µ∗( f ), 1A ⊗ x〉 = 〈 f , 1Ax〉 = 〈 f , x〉,

which shows (ε ⊗ idA◦ )(∆( f )) = f , and a similar computation shows (idA◦ ⊗ ε)(∆( f )) = f . Coasso-
ciativity of µ∗ follows from taking the transpose of the associativity of µ once one notices that the
transpose maps have the appropriate alternative expressions

(idA ⊗ µ)∗
∣∣∣
A∗⊗A∗ = id∗A ⊗ µ

∗ = idA∗ ⊗ µ
∗ and (µ ⊗ idA)∗

∣∣∣
A∗⊗A∗ = µ∗ ⊗ id∗A = µ∗ ⊗ idA∗

on the subspaces where we need them. �

To handle restricted duals of Hopf algebras, we present yet a few lemmas which say that the
structural maps take values in the appropriate subspaces.

Lemma 14. Let B = (B, µ,∆, η, ε) be a bialgebra. Then we have ∆∗(B◦ ⊗ B◦) ⊂ B◦. Also we have
µ∗(ε∗(1)) = ε∗(1) ⊗ ε∗(1) so that ε∗(1) ∈ B◦.

Proof. Suppose f1, f2 ∈ B◦, and write

µ∗( fk) =
∑

i

g(k)
i ⊗ h(k)

i for k = 1, 2.

To show that ∆∗( f1 ⊗ f2) ∈ B◦, by definition we need to show that µ∗(∆∗( f1 ⊗ f2)) ∈ B∗ ⊗ B∗. Let
a, b ∈ B and notice that the axiom (H4) saves the day in the following calculation:

〈µ∗
(
∆∗( f1 ⊗ f2)

)
, a ⊗ b〉 = 〈 f1 ⊗ f2,∆

(
µ(a ⊗ b)

)
〉

(H4)
=

∑
(a),(b)

〈 f1 ⊗ f2, a(1)b(1) ⊗ a(2)b(2)〉

=
∑
(a),(b)

〈 f1, a(1)b(1)〉 〈 f2, a(2)b(2)〉

=
∑
(a),(b)

∑
i, j

〈g(1)
i , a(1)〉 〈h

(1)
i , b(1)〉 〈g

(2)
j , a(2)〉 〈h

(2)
j , b(2)〉

=
∑

i, j

〈g(1)
i ⊗ g(2)

j ,∆(a)〉 〈h(1)
i ⊗ h(2)

j ,∆(b)〉

=
∑

i, j

〈∆∗(g(1)
i ⊗ g(2)

j ) ⊗ ∆∗(h(1)
i ⊗ h(2)

j ), a ⊗ b〉 .

We conclude that

µ∗
(
∆∗( f1 ⊗ f2)

)
=

∑
i, j

∆∗
(
g(1)

i ⊗ g(2)
j

)
︸          ︷︷          ︸

∈ B∗

⊗∆∗
(
h(1)

i ⊗ h(2)
j

)
︸          ︷︷          ︸

∈ B∗

∈ B∗ ⊗ B∗,

and since the images under ∆∗|B◦⊗B◦ of simple tensors are in B◦, the assertion about ∆∗ follows.
This computation also shows that axiom (H4) holds in the restricted dual.

To prove the assertion about ε∗, note first that with the usual identifications 〈ε∗(1), a〉 =
〈1, ε(a)〉 = ε(a). Take a, b ∈ B and compute

〈µ∗(ε∗(1)), a ⊗ b〉 = 〈1, ε(ab)〉 = ε(a) ε(b) = 〈ε∗(1) ⊗ ε∗(1), a ⊗ b〉.

In fact this also shows that axiom (H5) holds in the restricted dual. �

Lemma 15. Let H = (H, µ,∆, η, ε, γ) be a Hopf algebra. Then we have γ∗(H◦) ⊂ H◦.
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Proof. Let f ∈ H◦, and for a, b ∈ H compute

〈µ∗(γ∗( f )), a ⊗ b〉 = 〈 f , γ(ab)〉 = 〈 f , γ(b)γ(a)〉 = 〈µ∗( f ), γ(b) ⊗ γ(a)〉

=
∑

i

〈gi, γ(b)〉 〈hi, γ(a)〉 =
∑

i

〈γ∗(gi), b〉 〈γ∗(hi), a〉 =
∑

i

〈γ∗(hi) ⊗ γ∗(gi), a ⊗ b〉.

Thus we have
µ∗(γ∗( f )) =

∑
i

γ∗(hi) ⊗ γ∗(gi) ∈ H∗ ⊗H∗.

�

Sketch of a proof of Theorem 10. We have checked that the structural maps take values in the appro-
priate spaces (restricted dual or its tensor powers) when their domains of definition are restricted
to the appropriate spaces. Taking transposes of all axioms of Hopf algebras, and noticing that the
transposes of tensor product maps coincide with the tensor product maps of transposes on the
subspaces of our interest, one can mechanically check all the axioms for the Hopf algebra H◦. �
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