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1 On diagonalization of matrices: the Jordan normal form

Here and in the rest of the course, vector spaces are over the field C of complex numbers unless
otherwise stated.

Motivation and definition of generalized eigenvectors

Given a square matrix A, it is often convenient to diagonalize A. This means finding an invertible
matrix P (“a change of basis”), such that the conjugated matrix P A P−1 is diagonal. If, instead of
matrices, we think of a linear operator A from vector space V to itself, the equivalent question is
finding a basis for V consisting of eigenvectors of A.

Recall from basic linear algebra that (for example) any real symmetric matrix can be diago-
nalized. Unfortunately, this is not the case with all matrices.

Example 1. Let λ ∈ C and

A =

 λ 1 0
0 λ 1
0 0 λ

 ∈ C3×3.

The characteristic polynomial of A is

pA(x) = det(xI − A) = (x − λ)3,

so we know that A has no other eigenvalues but λ. As usual, since det(A − λI) = 0, the eigenspace
pertaining to eigenvalue λ is nontrivial, dim (Ker (A − λI)) > 0. Note that

A − λI =

 0 1 0
0 0 1
0 0 0

 ,
so that the image of A is two dimensional, dim (Im (A − λI)) = 2. By rank-nullity theorem,

dim
(
Im (A − λI)

)
+ dim

(
Ker (A − λI)

)
= 3,

so the eigenspace pertaining to λ must be one-dimensional. Thus the maximal number of linearly indepen-
dent eigenvectors of A we can have is one — in particular, there doesn’t exist a basis of C3 consisting of
eigenvectors of A.

We still take a look at the action of A in some basis. Let

w1 =

 1
0
0

 w2 =

 0
1
0

 w3 =

 0
0
1

 .
Then the following “string” indicates how A − λI maps these vectors

w3
A−λ
7→ w2

A−λ
7→ w1

A−λ
7→ 0.

In particular we see that (A − λI)3 = 0.

The example illustrates the following definition.

Definition 1. Let V be a vector space and A : V → B be a linear map. A vector v ∈ V is said to be a
generalized eigenvector of eigenvalue λ if for some positive integer p we have (A − λI)p v = 0. The set of
these generalized eigenvectors is called the generalized eigenspace of A pertaining to eigenvalue λ.

Clearly the case p = 1 corresponds to the usual eigenvectors.
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The Jordan normal form

Although not every matrix has a basis of eigenvectors, we will see that every complex square
matrix has a basis of generalized eigenvectors. More precisely, if V is a finite dimensional complex
vector space and A : V → V is a linear map, then there exists eigenvalues λ1, λ2, . . . , λk of A (not
necessarily distinct) and a basis {w( j)

m : 1 ≤ j ≤ k, 1 ≤ m ≤ n j} of V which consists of “strings” as
follows

w(1)
n1

A−λ1
7→ w(1)

n1−1
A−λ1
7→ · · ·

A−λ1
7→ w(1)

2
A−λ1
7→ w(1)

1
A−λ1
7→ 0

w(2)
n2

A−λ2
7→ w(2)

n2−1
A−λ2
7→ · · ·

A−λ2
7→ w(2)

2
A−λ2
7→ w(2)

1
A−λ2
7→ 0

...
...

...

w(k)
nk

A−λk
7→ w(k)

nk−1
A−λk
7→ · · ·

A−λk
7→ w(k)

2
A−λk
7→ w(k)

1
A−λk
7→ 0.

(1.1)

Note that in this basis the matrix of A takes the “block diagonal form”

A =


Jλ1;n1 0 0 · · · 0

0 Jλ2;n2 0 · · · 0
0 0 Jλ3;n3 0
...

...
. . .

...
0 0 0 · · · Jλk;nk


, (1.2)

where the blocks correspond to the subspaces spanned by w( j)
1 ,w

( j)
2 , . . . ,w

( j)
n j

and they take the
following form

Jλ j;n j =



λ j 1 0 · · · 0 0
0 λ j 1 · · · 0 0
0 0 λ j 0 0
...

...
. . .

...
0 0 0 · · · λ j 1
0 0 0 · · · 0 λ j


∈ Cn j×n j .

Definition 2. A matrix of the form (1.2) is said to be in Jordan normal form (or Jordan canonical form).

The characteristic polynomial of the a matrix A in Jordan canonical form is

pA(x) = det (xI − A) =

k∏
j=1

(x − λ j)n j .

Note also that if we write a block Jλ;n = λI + N as a sum of diagonal part λI and upper
triangular part N, then the latter is nilpotent: Nn = 0. In particular the assertion pA(A) = 0 of the
Cayley-Hamilton theorem follows immediately.

Below is the shortest and most concrete proof of the existence of Jordan normal form known
to me.

Theorem 1. Given any complex n×n matrix A, there exists an invertible matrix P such that the conjugated
matrix P A P−1 is in Jordan normal form.

Proof. In view of the above discussion it is clear that the statement is equivalent to the following:
if V is a finite dimensional complex vector space and A : V → V a linear map, then there exists a
basis of V consisting of strings as in (1.1).

We prove the statement by induction on n = dim (V). The case n = 1 is clear. As an induction
hypothesis, assume that the statement is true for all linear maps of vector spaces of dimension
less than n.
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Take any eigenvalue λ of A (any root of the characteristic polynomial). Note that

dim (Ker (A − λI)) > 0,

and since n = dim (Ker (A − λI)) + dim (Im (A − λI)), the dimension of the image of A − λI is
strictly less than n. Denote

R = Im (A − λI) and r = dim (R) < n.

Note that R is an invariant subspace for A, that is A R ⊂ R (indeed, A (A−λI) v = (A−λI) A v).
We can use the induction hypothesis to the restriction of A to R, to find a basis

{w( j)
m : 1 ≤ j ≤ k, 1 ≤ m ≤ n j}

of R in which the action of A is described by the strings as in (1.1).

Let q = dim (R ∩ Ker (A − λI)). This means that in R there are q linearly independent
eigenvectors of A with eigenvalueλ. The vectors at the right end of the strings span the eigenspaces
of A in R, so we assume without loss of generality that the last q strings correspond to eigenvalue
λ and others to different eigenvalues: λ1, λ2, . . . , λk−q , λ and λk−q+1 = λk−q+2 = · · · = λk = λ. For
all k − q < j ≤ k the vector w( j)

n j
is in R, so we can choose y( j)

∈ V such that (A − λI) y( j) = w( j)
n j

. The
vectors y( j) extend the last q strings from the left.

Find vectors z(1), z(2), . . . , z(n−r−q) which complete the linearly independent collection w(k−q+1)
1 , . . . ,w(k−1)

1 ,w(k)
1

to a basis of Ker (A − λI). We have now found n vectors in V, which form strings as follows

z(1) A−λ
7→ 0

...
...

z(n−r−q) A−λ
7→ 0

w(1)
n1

A−λ1
7→ · · ·

A−λ1
7→ w(1)

1
A−λ1
7→ 0

...
...

...

w(k−q)
nk−q

A−λk−q
7→ · · ·

A−λk−q
7→ w(k−q)

1

A−λk−q
7→ 0

y(k−q+1) A−λ
7→ w(k−q+1)

nk−q+1

A−λ
7→ · · ·

A−λ
7→ w(k−q+1)

1
A−λ
7→ 0

...
...

...
...

y(k) A−λ
7→ w(k)

nk−1
A−λ
7→ · · ·

A−λ
7→ w(k)

1
A−λ
7→ 0

.

It suffices to show that these vectors are linearly independent. Suppose that a linear combination
of them vanishes

k∑
j=k−q+1

α j y( j) +
∑
j,m

β j,m w( j)
m +

n−r−q∑
l=1

γl z(l) = 0.

From the string diagram we see that the image of this linear combination under A − λI is a linear
combination of the vectors w( j)

m , which are linearly independent, and since the coefficient of w( j)
n j

is

α j, we get α j = 0 for all j. Now recalling that {w( j)
m } is a basis of R, and {w( j)

1 : k − q < j ≤ k} ∪ {z(l)
} is

a basis of Ker (A − λI), and {w( j)
1 : k − q < j ≤ k} is a basis of R ∩ Ker (A − λI), we see that all the

coefficients in the linear combination must vanish. This finishes the proof. �

Diagonalizable matrices can be thought of as a simple example of completely reducible
representations: the vector space V is a direct sum of eigenspaces of the matrix. The underlying
algebra that is represented in V is the quotient of the polynomial algebra by the ideal generated by
the minimal polynomial of the matrix. In particular, if all the roots of the minimal polynomial have
multiplicity one, then all representations are completely reducible. Non-diagonalizable matrices
are a simple example of a failure of complete reducibility. The Jordan blocks Jλ j;n j correspond to
invariant subspaces, which are indecomposable, but not irreducible if n j > 1.
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