




Exercise 2

In the group algebra A = C[Z] ∼= C[t, t−1] equipped with the Hopf algebra structure such that
∆(t) = t⊗ t, we define the elements gz (z ∈ C∗) and s of the restricted dual A◦ by〈

gz, t
m
〉

= zm (0.1)〈
s, tm

〉
= m (0.2)

for all m ∈ Z.
Let V be a vector space with a basis (ei)

n
i=1 and an A-module structure given by

t · ei = zei + ei−1

where z ∈ C∗ and e0 is interpreted as 0 ∈ V . The representative forms λi,j ∈ A◦ are defined so
that

a · ej =

n∑
i=1

〈
λi,j , a

〉
ei

for all a ∈ A.

Claim 1. We have

λi,j =


0 if i > j
gz if i = j

zi−j

(j−i)! s(s− 1) · · · (s+ i− j + 1)gz if i < j
.

Starting from the definition
t · ej = zej + ej−1,

one finds recursively the action of tm, m ∈ N, on the basis vectors

t2 · ej = t ·
(
zej + ej−1

)
= z2ej + 2zej−1 + ej−2

t3 · ej = t ·
(
z2ej + 2zej−1 + ej−2

)
= z3ej + 3z2ej−1 + 3zej−2 + ej−3

...
...

et cetera, where ei = 0 whenever i ≤ 0. By a simple induction one proves that for m ∈ N

tm · ej =

m∑
r=0

(
m

r

)
zm−r ej−r =

j∑
i=1

(
m

j − i

)
zm+i−j ei.

Therefore we have for m ∈ N〈
λi,j , t

m
〉

=

(
m

j − i

)
zm+i−j =

1

(j − i)!
m(m− 1) · · · (m+ i− j + 1) zm+i−j .

Recalling that (∆⊗ id⊗· · ·⊗ id)◦ · · · ◦ (∆⊗ id)◦∆(tm) = tm⊗· · ·⊗ tm and
〈
1A◦ , t

m
〉

= ε(tm) = 1,
we should compare the above expression with〈

s(s− 1) · · · (s+ i− j + 1)gz, t
m
〉

=
〈
s⊗ (s− 1)⊗ · · · ⊗ (s+ i− j + 1)⊗ gz , tm ⊗ · · · ⊗ tm

〉
=
〈
s, tm

〉 〈
s− 1, tm

〉
· · ·
〈
s+ i− j + 1, tm

〉 〈
gz, t

m
〉

= m(m− 1) · · · (m+ i− j + 1) zm.

We indeed observe the claimed formula for m ∈ N〈
λi,j , t

m
〉

=
zi−j

(j − i)!
〈
s(s− 1) · · · (s+ i− j + 1)gz, t

m
〉
.
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We should still verify the formula for m < 0. To this end we first need the matrix of t−1 acting
on V

t−1 · ej =

n∑
i=1

〈
λi,j , t

−1〉 ei.
By the A-module property it has to be the inverse of the matrix of t

ej = tt−1 · ej =

n∑
i=1

〈
λi,j , t

−1〉 (zei + ei−1
)

=

n∑
i′=1

(
z
〈
λi′,j , t

−1〉+
〈
λi′+1,j , t

−1〉︸ ︷︷ ︸
= δi′,j

)
ei′

so with a small recursive calculation we find the formula

〈
λi,j , t

−1〉 =

 0 if i > j
z−1 if i = j

(−1)j−izi−j−1 if i < j

It is convenient for calculations to write this as

t−1 · ej =
∑
r≥0

(−1)r

z1+r
ej−r.

Now it is a combinatorial exercise to find the action of t−m for m ∈ N, namely

t−m · ej =
∑
r1≥0

· · ·
∑
rm≥0

(−1)r1+···+rm

zm+r1+···+rm
ej−r1−···−rm

=
∑
r≥0

(−1)r

zm+r

(
r +m− 1

m− 1

)
ej−r,

where we used the observation that the number of m-tuples (r1, . . . , rm) of non-negative integers
such that r1+ · · ·+rm = r is the same as the number of ways of placing m−1 separators between r
boxes, or the number of ways of choosing among r+m−1 boxes m−1 which serve as separators.1

The non-zero matrix elements of t−m are thus when i ≤ j〈
λi,j , t

−m〉 =
(−1)j−i

zm+j−i

(
m+ j − i− 1

m− 1

)
=

(−1)j−i

zm+j−i
1

(j − i)!
m(m+ 1) · · · (m+ j − i− 1)

=
zi−j

(j − i)!
(−m)(−m− 1) · · · (−m− j + i+ 1) z−m

which again coincides with

zi−j

(j − i)!
〈
s(s− 1) · · · (s+ i− j + 1)gz, t

−m〉.
By considering the values of the representative forms on the basis (tm)m∈Z of A we have

therefore shown

λi,j =
zi−j

(j − i)!
s(s− 1) · · · (s+ i− j + 1)gz when i ≤ j and

λi,j = 0 when i > j.

1It is a pleasant exercise also to derive the combinatorial identity using generating functions. Setting Gm(q) =(∑
s≥0 q

s
)m

= (1− q)−m, the quantity we’re interested in is the coefficient of qr in the power series expansion of

Gm(q) at q = 0. But (1− q)−m is proportional to the (m− 1)th derivative of the geometric series (1− q)−1, so the
coefficient is easy to figure out.
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Exercise 4

Definition 1. Given two Hopf algebras (Ai, µi,∆i, ηi, εi, γi), i = 1, 2, we can equip A1 ⊗ A2 with
a Hopf algebra structure given by

µ = (µ1 ⊗ µ2) ◦ (idA1
⊗ SA2,A1

⊗ idA2
)

∆ = (idA1
⊗ SA1,A2

⊗ idA2
) ◦ (∆1 ⊗∆2)

η = η1 ⊗ η2
ε = ε1 ⊗ ε2
γ = γ1 ⊗ γ2.

Claim 2. Let A = C[x] be the algebra of polynomials equipped with the unique Hopf algebra
structure such that ∆(x) = x⊗ 1 + 1⊗ x. Then there is an isomorphism of Hopf algebras

A◦ ∼= A⊗ C[C].

We will describe explicitly both A◦ and A⊗ C[C]. First, however, let us see what is the Hopf
algebra structure of A.

Hopf algebra structure of A = C[x]

Note that while the algebra A = C[x] of polynomials in resembles the algebra C[t, t−1] of Laurent
polynomials considered in the previous exercises, the Hopf algebra structure turns out to be very
different.

Multiplication and unit are those of the polynomial algebra, and in terms of the linear basis
(xn)n∈N of C[x] they read µ(xn⊗xm) = xn+m and η(λ) = λx0. The coproduct must be an algebra
morphism, it is determined by its value ∆(x) = x⊗ 1 + 1⊗ x at the generator (and since A is the
free algebra generated by x, such an algebra morphism exists). By induction one finds the formula

∆(xn) =

n∑
j=0

(
n

j

)
xj ⊗ xn−j .

Since x is a primitive element, we must have ε(x) = 0, and again the counit should be an algebra
morphism, it is determined by this value at the generator and we get

ε(xn) = δn,0.

The fact that x is primitive implies also γ(x) = −x, and since γ should be an algebra morphism
A→ Aop it, too, is fixed by the value at the generator. In general we have

γ(xn) = (−1)nxn.

Note that axioms (1) and (2) of Hopf algebras express the fact that (A,µ, η) is an algebra, and
they are therefore clearly satisfied in the present case. Axioms (4), (5), (5’), (6) express the facts
that ∆ and ε are algebra morphisms, and are therefore satisfied by construction. Axiom (1’) states
the coassociativity (∆⊗ id) ◦∆ = (id⊗∆) ◦∆ as mappings between A→ A⊗A⊗A, and axiom
(2’) states the counitality (ε ⊗ id) ◦ ∆ = id = (id ⊗ ε) ◦ ∆ as mappings between A → C. Since
all mappings involved are algebra morphisms, it suffices to verify properties (1’) and (2’) for the
generator x, which is easily done. Therefore (A,µ,∆, η, ε) is a bialgebra. To prove the remaining
property (3) we use the following useful observation.

Lemma 1. Let (A,µ,∆, η, ε) be a bialgebra, which as an algebra is generated by (gi)i∈I . Suppose
γ : A→ Aop is an algebra morphism such that

µ ◦ (γ ⊗ id) ◦∆(a) = η ◦ ε(a) = µ ◦ (id⊗ γ) ◦∆(a) (0.3)

for all generators a = gi (i ∈ I). Then (A,µ,∆, η, ε, γ) is a Hopf algebra.
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Proof. We must establish the axiom (3), µ◦(γ⊗ id)◦∆ = η◦ε = µ◦(id⊗γ)◦∆. We will prove that
the set of elements a ∈ A satisfying the relation (0.3) is a subalgebra of A. Since by assumption it
contains the generators gi of A, the statement follows.

In view of the facts ∆(1) = 1 ⊗ 1, ε(1) = 1 and γ(1) = 1, which are evident given the algebra
morphism properties, the unit 1 ∈ A satisfies (0.3). Suppose now that two elements a, b ∈ A satisfy
(0.3). Write their coproducts using the Sweedler’s sigma notation, ∆(a) =

∑
(a) a(1) ⊗ a(2) and

∆(b) =
∑

(b) b(1) ⊗ b(2). Then

µ ◦ (γ ⊗ id) ◦∆(ab) = µ ◦ (γ ⊗ id)
( ∑
(a),(b)

(a(1)b(1))⊗ (a(2)b(2))
)

= µ
( ∑

(a),(b)

(γ(b(1))γ(a(1)))⊗ (a(2)b(2))
)

=
∑

(a),(b)

γ(b(1))γ(a(1))a(2)b(2)

= ε(a)
∑
(b)

γ(b(1))b(2) = ε(a)ε(b) 1 = ε(ab) 1.

The other equality is proved by an analogous calculation.

In view of the Lemma, it is sufficient to verify property (3) for the generator x,

µ ◦ (γ ⊗ id) ◦∆(x) = (−x)1 + (1)x = 0 = ε(x)1A = · · · = µ ◦ (id⊗ γ) ◦∆(x).

So A = C[x] indeed has a unique Hopf algebra structure with the given coproduct.

Explicit description of A⊗ C[C]

A linear basis of A is (xn)n∈N, and a linear basis of the group algebra C[C] of the additive group
of complex numbers is (vz)z∈C. The vector space A⊗ C[C] has a basis

(xn ⊗ vz)(n,z)∈N×C

and we compute the values of µ,∆, η, ε, γ on these basis elemensts using the definition of tensor
product of Hopf algebras and the known Hopf algebra structures of A and C[C]. We get

(i) µ
(
(xn ⊗ vz)⊗ (xm ⊗ vw)

)
= xn+m ⊗ vz+w

(ii) ∆(xn ⊗ vz) =
∑n
j=0

(
n
j

)
(xj ⊗ vz)⊗ (xn−j ⊗ vz)

(iii) η(1) = x0 ⊗ v0

(iv) ε(xn ⊗ vz) = δn,0

(v) γ(xn ⊗ vz) = (−1)n(xn ⊗ v−z) .

Explicit description of the restricted dual A◦

A linear basis of A◦ is given by the derivatives of the evaluations ev
(n)
z , z ∈ C, n ∈ N defined as〈

ev(n)
z , p

〉
= p(n)(z)

for p ∈ C[x] a polynomial and p(n) its nth derivative. This can be shown by methods similar to the
analysis of C[Z]◦ in the lectures, or by considering certain recursive sequences as was indicated in
the exercise session of 1.4.2010.2

The restricted dual A◦ has a Hopf algebra structure and below we compute the values of the
structure constants in this basis.

2To be explicit, the poisson d’avril went as follows. Elements of the dual f ∈ A∗ correspond to sequences (fn)n∈N
through fn =

〈
f, xn

〉
. Any element of the restricted dual f ∈ A◦ corresponds to a sequence that satisfies a recursion

fn+m =

m−1∑
j=0

cjfn+j ∀n ∈ N
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(i) The product of A◦ is the adjoint of ∆, so we compute directly〈
∆∗
(
ev(n)
z ⊗ ev(m)

w

)
, xk
〉

=
〈
ev(n)
z ⊗ ev(m)

w ,∆(xk)
〉

=
〈
ev(n)
z ⊗ ev(m)

w ,

k∑
j=0

(
k

j

)
xj ⊗ xk−j

〉
=

k∑
j=0

(
k

j

)
j! zj−n

(j − n)!

(k − j)! wk−j−m

(k − j −m)!

=

k−m∑
j=n

k!

(j − n)!(k − j −m)!
zj−nwk−j−m

=
k!

(k −m− n)!

k−m∑
j=n

(k −m− n)!

(j − n)!(k − j −m)!
zj−nwk−j−m

=
k!

(k −m− n)!
(z + w)k−m−n =

〈
ev

(n+m)
z+w , xk

〉
.

(ii) Use the Leibnitz formula for derivatives of a product function to get

〈
µ∗(ev(n)

z ), xk ⊗ xl
〉

=
〈
ev(n)
z , xk+l

〉
=

n∑
j=0

(
n

j

) (
∂jz z

k
) (

∂n−jz zl
)

=

n∑
j=0

(
n

j

) 〈
ev(j)
z , xk

〉 〈
ev(n−j)
z , xl

〉
=

n∑
j=0

(
n

j

) 〈
ev(j)
z ⊗ ev(n−j)

z , xk ⊗ xl
〉
.

(iii) The unit of A◦ is the adjoint of ε〈
1A◦ , x

k
〉

= ε(xk) = δk,0 =
〈
ev

(0)
0 , xk

〉
.

(iv) The counit of A◦ is the adjoint of η

η∗(ev(n)
z ) =

〈
ev(n)
z , x0

〉
= δn,0.

(v) The antipode of A◦ is the adjoint of γ〈
γ∗(ev(n)

z ), xk
〉

=
〈
ev(n)
z , γ(xk)

〉
=
〈
ev(n)
z , (−1)kxk

〉
= (−1)k

k!

(k − n)!
zk−n = (−1)n

k!

(k − n)!
(−z)k−n = (−1)n

〈
ev

(n)
−z , x

k
〉
.

All of the formulas coincide with the corresponding ones in A⊗ C[C], so we conclude that the

linear map A⊗ C[C] −→ A◦ sending xn ⊗ vz 7→ ev
(n)
z is an isomorphism of Hopf algebras.

for some m > 0 and c0, c1, . . . , cm−1 ∈ C. For given m and c0, c1, . . . , cm−1 the sequences satisfying this recursion
form a m dimensional vector space. If we define the polynomial P (z) = zm −

∑m−1
j=0 cjz

j and assume that its
roots are z1, . . . , zr with respective multiplicities m1, . . . ,mr, then a basis of the space of sequences satisfying the

recursion is given by the sequences corresponding to ev
(n)
zj ∈ A◦ with j = 1, 2, . . . , r and 0 ≤ n < mj . This shows

that the restricted dual is spanned by
{

ev
(n)
z : (z, n) ∈ C× N

}
. Note also that although the Hopf algebra structure

of C[Z] is very different, the same analysis works for C[Z]◦, too, with the only difference that z must be non-zero.
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