Problem sheet 8

Exercise 1: Two ways of writing the Yang-Baxter equation
Let V be a vector space, and let R and \check{R} be linear maps $V \otimes V \rightarrow V \otimes V$ related by

$$
\check{R}=S_{V, V} \circ R .
$$

Finish the proof discussed in the lecture, that the following equalities of linear maps $V \otimes V \otimes V \rightarrow$ $V \otimes V \otimes V$ are equivalent
(i) $\check{R}_{12} \circ \check{R}_{23} \circ \check{R}_{12}=\check{R}_{23} \circ \check{R}_{12} \circ \check{R}_{23}$
(ii) $R_{12} \circ R_{13} \circ R_{23}=R_{23} \circ R_{13} \circ R_{12}$.

Exercise 2: A solution to the Yang-Baxter equation
Let V be a vector space with basis $v_{1}, v_{2}, \ldots, v_{d}$ and let $q \in \mathbb{C} \backslash\{0\}$. Define a linear map

$$
\check{R}: V \otimes V \rightarrow V \otimes V \quad \text { by } \quad \check{R}\left(v_{i} \otimes v_{j}\right)= \begin{cases}q v_{i} \otimes v_{j} & \text { if } i=j \\ v_{j} \otimes v_{i} & \text { if } i<j \\ v_{j} \otimes v_{i}+\left(q-q^{-1}\right) v_{i} \otimes v_{j} & \text { if } i>j\end{cases}
$$

(a) Verify that we have the following equality of linear maps $V \otimes V \otimes V \rightarrow V \otimes V \otimes V$

$$
\begin{equation*}
\check{R}_{12} \circ \check{R}_{23} \circ \check{R}_{12}=\check{R}_{23} \circ \check{R}_{12} \circ \check{R}_{23} . \tag{YBE}
\end{equation*}
$$

(b) Verify also that

$$
\left(\check{R}-q \mathrm{id}_{V \otimes V}\right) \circ\left(\check{R}+q^{-1} \mathrm{id}_{V \otimes V}\right)=0 .
$$

Exercise 3: A universal R-matrix for $\mathbb{C}[\mathbb{Z} / N \mathbb{Z}]$
Let N be a positive integer and denote $\omega=e^{2 \pi i} / N$. Let A be the algebra with one generator θ and relation $\theta^{N}=1$, equipped with the unique Hopf algebra structure such that $\Delta(\theta)=\theta \otimes \theta$ (thus A is isomorphic to the Hopf algebra of the cyclic group $\mathbb{Z} / N \mathbb{Z})$. Define

$$
R=\frac{1}{N} \sum_{m, n=0}^{N-1} \omega^{m n} \theta^{m} \otimes \theta^{n} \in A \otimes A
$$

Show that R is a universal R-matrix for A.
Exercise 4: Properties of the universal R-matrix of braided Hopf algebras
Let $A=(A, \mu, \Delta, \eta, \epsilon)$ be a braided bialgebra with universal R-matrix $R \in A \otimes A$.
(a) Show that $R_{21}^{-1}:=S_{A, A}\left(R^{-1}\right)$ is also a universal R-matrix for the bialgebra A.

Suppose furthermore that A admits an antipode $\gamma: A \rightarrow A$, so that $A=(A, \mu, \Delta, \eta, \epsilon, \gamma)$ is a braided Hopf algebra.
(b) Show that

$$
\left(\gamma \otimes \mathrm{id}_{A}\right)(R)=R^{-1}
$$

(c) Show, for example using the results of (a) and (b), that

$$
(\gamma \otimes \gamma)(R)=R
$$

