17.3.2011

Problem sheet 7

Exercise 1: The *q*-binomial coefficients at roots of unity

Let $q \in \mathbb{C}$ be a primitive p^{th} root of unity, that is, $q^p = 1$ and $q, q^2, q^3, \dots, q^{p-1} \neq 1$. Show that the values of the *q*-binomial coefficients are then described as follows: if the quotients and remainders modulo *p* of *n* and *k* are n = pD(n) + R(n) and k = pD(k) + R(k) with $D(n), D(k) \in \mathbb{N}$ and $R(n), R(k) \in \{0, 1, 2, \dots, p-1\}$, then

$$\begin{bmatrix} n \\ k \end{bmatrix}_q = \begin{pmatrix} D(n) \\ D(k) \end{pmatrix} \times \begin{bmatrix} R(n) \\ R(k) \end{bmatrix}_q.$$

In particular $\begin{bmatrix} n \\ k \end{bmatrix}_q$ is non-zero only if the remainders satisfy $R(k) \le R(n)$.

Exercise 2: *Representative forms in a representation of the Laurent polynomial algebra* Let $A = \mathbb{C}[t, t^{-1}] \cong \mathbb{C}[\mathbb{Z}]$ be the algebra of Laurent polynomials

$$A = \left\{ \sum_{n=-N}^{N} c_n t^n \mid N \in \mathbb{N}, c_{-N}, c_{-N+1}, \dots, c_{N-1}, c_N \in \mathbb{C} \right\}.$$

Define the $s \in A^*$ and $g_z \in A^*$, for $z \in \mathbb{C} \setminus \{0\}$, by the formulas

$$\langle g_z, t^n \rangle = z^n \qquad \langle s, t^n \rangle = n.$$

(a) Show that $s \in A^{\circ}$ and $g_z \in A^{\circ}$.

Let us equip *A* with the Hopf algebra structure such that $\Delta(t) = t \otimes t$.

(b) Let $z \in \mathbb{C} \setminus \{0\}$. Consider the finite dimensional *A*-module *V* with basis u_1, u_2, \ldots, u_n such that

 $t.u_j = z u_j + u_{j-1} \quad \forall j > 1$ and $t.u_1 = z u_1$.

Define the representative forms $\lambda_{i,j} \in A^\circ$ by $a.u_j = \sum_{i=1}^n \langle \lambda_{i,j}, a \rangle u_i$. Show that we have the following equalities in the Hopf algebra A° :

$$\lambda_{i,j} = \begin{cases} 0 & \text{if } i > j \\ g_z & \text{if } i = j \\ \frac{z^{i-j}}{(j-i)!} s (s-1) \cdots (s+i-j+1) g_z & \text{if } i < j \end{cases}$$

Exercise 3: Taking the restricted dual is a contravariant functor

Let *A* and *B* be two algebras and $f : A \to B$ a homomorphism of algebras, and let f^* be its transpose map $B^* \to A^*$.

- (a) Show that for any $\varphi \in B^{\circ}$ we have $f^{*}(\varphi) \in A^{\circ}$.
- (b) Show that $f^*|_{B^\circ} : B^\circ \to A^\circ$ is a homomorphism of coalgebras.

Exercise 4: The restricted dual of the binomial Hopf algebra

Given two Hopf algebras (A_i , μ_i , Δ_i , η_i , ϵ_i , γ_i), i = 1, 2, we can form the tensor product of Hopf algebras by equipping $A_1 \otimes A_2$ with the structural maps

$$\mu = (\mu_1 \otimes \mu_2) \circ (\mathrm{id}_{A_1} \otimes S_{A_2,A_1} \otimes \mathrm{id}_{A_2}) \qquad \Delta = (\mathrm{id}_{A_1} \otimes S_{A_1,A_2} \otimes \mathrm{id}_{A_2}) \circ (\Delta_1 \otimes \Delta_2)$$
$$\eta = \eta_1 \otimes \eta_2 \qquad \epsilon = \epsilon_1 \otimes \epsilon_2 \qquad \gamma = \gamma_1 \otimes \gamma_2.$$

Let $A = \mathbb{C}[x]$ be the algebra of polynomials in the indeterminate x, equipped with the unique Hopf algebra structure such that $\Delta(x) = 1 \otimes x + x \otimes 1$ (the binomial Hopf algebra). Show that we have an isomorphism of Hopf algebras

$$A^{\circ} \cong A \otimes \mathbb{C}[\mathbb{C}],$$

that is, the restricted dual of *A* is isomorphic to the tensor product of the Hopf algebra *A* with the Hopf algebra of the additive group of complex numbers.