Problem sheet 7

Exercise 1: The q-binomial coefficients at roots of unity
Let $q \in \mathbb{C}$ be a primitive $p^{\text {th }}$ root of unity, that is, $q^{p}=1$ and $q, q^{2}, q^{3}, \ldots, q^{p-1} \neq 1$. Show that the values of the q-binomial coefficients are then described as follows: if the quotients and remainders modulo p of n and k are $n=p D(n)+R(n)$ and $k=p D(k)+R(k)$ with $D(n), D(k) \in \mathbb{N}$ and $R(n), R(k) \in\{0,1,2, \ldots, p-1\}$, then

$$
\llbracket \begin{aligned}
& n \\
& k
\end{aligned} \|_{q}=\binom{D(n)}{D(k)} \times \llbracket\left[\begin{array}{c}
R(n) \\
R(k)
\end{array} \|_{q} .\right.
$$

In particular $\llbracket \begin{aligned} & n \\ & k\end{aligned} \|_{q}$ is non-zero only if the remainders satisfy $R(k) \leq R(n)$.
Exercise 2: Representative forms in a representation of the Laurent polynomial algebra
Let $A=\mathbb{C}\left[t, t^{-1}\right] \cong \mathbb{C}[\mathbb{Z}]$ be the algebra of Laurent polynomials

$$
A=\left\{\sum_{n=-N}^{N} c_{n} t^{n} \mid N \in \mathbb{N}, c_{-N}, c_{-N+1}, \ldots, c_{N-1}, c_{N} \in \mathbb{C}\right\}
$$

Define the $s \in A^{*}$ and $g_{z} \in A^{*}$, for $z \in \mathbb{C} \backslash\{0\}$, by the formulas

$$
\left\langle g_{z}, t^{n}\right\rangle=z^{n} \quad\left\langle s, t^{n}\right\rangle=n
$$

(a) Show that $s \in A^{\circ}$ and $g_{z} \in A^{\circ}$.

Let us equip A with the Hopf algebra structure such that $\Delta(t)=t \otimes t$.
(b) Let $z \in \mathbb{C} \backslash\{0\}$. Consider the finite dimensional A-module V with basis $u_{1}, u_{2}, \ldots, u_{n}$ such that

$$
t . u_{j}=z u_{j}+u_{j-1} \quad \forall j>1 \quad \text { and } \quad t \cdot u_{1}=z u_{1} .
$$

Define the representative forms $\lambda_{i, j} \in A^{\circ}$ by $a . u_{j}=\sum_{i=1}^{n}\left\langle\lambda_{i, j}, a\right\rangle u_{i}$. Show that we have the following equalities in the Hopf algebra A° :

$$
\lambda_{i, j}=\left\{\begin{array}{ll}
0 & \text { if } i>j \\
g_{z} & \text { if } i=j \\
\frac{z^{i-j}}{(j-i)!} s(s-1) \cdots(s+i-j+1) g_{z} & \text { if } i<j
\end{array} .\right.
$$

Exercise 3: Taking the restricted dual is a contravariant functor
Let A and B be two algebras and $f: A \rightarrow B$ a homomorphism of algebras, and let f^{*} be its transpose $\operatorname{map} B^{*} \rightarrow A^{*}$.
(a) Show that for any $\varphi \in B^{\circ}$ we have $f^{*}(\varphi) \in A^{\circ}$.
(b) Show that $\left.f^{*}\right|_{B^{\circ}}: B^{\circ} \rightarrow A^{\circ}$ is a homomorphism of coalgebras.

Exercise 4: The restricted dual of the binomial Hopf algebra

Given two Hopf algebras $\left(A_{i}, \mu_{i}, \Delta_{i}, \eta_{i}, \epsilon_{i}, \gamma_{i}\right), i=1,2$, we can form the tensor product of Hopf algebras by equipping $A_{1} \otimes A_{2}$ with the structural maps

$$
\begin{gathered}
\mu=\left(\mu_{1} \otimes \mu_{2}\right) \circ\left(\mathrm{id}_{A_{1}} \otimes S_{A_{2}, A_{1}} \otimes \mathrm{id}_{A_{2}}\right) \quad \Delta=\left(\mathrm{id}_{A_{1}} \otimes S_{A_{1}, A_{2}} \otimes \mathrm{id}_{A_{2}}\right) \circ\left(\Delta_{1} \otimes \Delta_{2}\right) \\
\eta=\eta_{1} \otimes \eta_{2}
\end{gathered}
$$

Let $A=\mathbb{C}[x]$ be the algebra of polynomials in the indeterminate x, equipped with the unique Hopf algebra structure such that $\Delta(x)=1 \otimes x+x \otimes 1$ (the binomial Hopf algebra). Show that we have an isomorphism of Hopf algebras

$$
A^{\circ} \cong A \otimes \mathbb{C}[\mathbb{C}]
$$

that is, the restricted dual of A is isomorphic to the tensor product of the Hopf algebra A with the Hopf algebra of the additive group of complex numbers.

