Problem sheet 5

Exercise 1: Grouplike and primitive elements

Let $(A, \mu, \eta, \Delta, \epsilon, \gamma)$ be a Hopf algebra. An element $a \in A$ is said to be grouplike if $a \neq 0$ and $\Delta(a) = a \otimes a$. An element $x \in A$ is said to be primitive if $\Delta(x) = x \otimes 1_A + \overline{1_A \otimes x}$. Show that:

- (a) When $a \in A$ is grouplike, we have $\epsilon(a) = 1$ and a is invertible and $\gamma(a) = a^{-1}$.
- (b) When $x \in A$ is primitive, we have $\epsilon(x) = 0$ and $\gamma(x) = -x$.

Exercise 2: Opposite and/or co-opposite bialgebras

Suppose that $A = (A, \mu, \Delta, \eta, \epsilon)$ is a bialgebra. Let $\mu^{\text{op}} = \mu \circ S_{A,A}$ be the opposite product and $\Delta^{\text{cop}} = S_{A,A} \circ \Delta$ be the (co-)opposite coproduct. Show that all of the following are bialgebras:

the opposite bialgebra $A^{\text{op}} = (A, \mu^{\text{op}}, \Delta, \eta, \epsilon)$ the co-opposite bialgebra $A^{\text{cop}} = (A, \mu, \Delta^{\text{cop}}, \eta, \epsilon)$ the opposite co-opposite bialgebra $A^{\text{op,cop}} = (A, \mu^{\text{op}}, \Delta^{\text{cop}}, \eta, \epsilon)$.

Exercise 3: Opposite and/or co-opposite Hopf algebras

Suppose that $(A, \mu, \Delta, \eta, \epsilon)$ is a bialgebra, which admits an antipode $\gamma : A \to A$.

- (a) Show that $A^{\text{op,cop}} = (A, \mu^{\text{op}}, \Delta^{\text{cop}}, \eta, \epsilon, \gamma)$ is a Hopf algebra, called the the opposite coopposite Hopf algebra to $A = (A, \mu, \Delta, \eta, \epsilon, \gamma)$.
- (b) Show that the following conditions are equivalent
 - the opposite bialgebra $A^{\rm op}$ admits an antipode $\tilde{\gamma}$
 - the co-opposite bialgebra $A^{\rm cop}$ admits an antipode $\tilde{\gamma}$
 - the antipode $\gamma: A \to A$ is invertible, with inverse $\gamma^{-1} = \tilde{\gamma}$.

Exercise 4: A lemma for construction of antipode

Let $B = (B, \mu, \Delta, \eta, \epsilon)$ be a bialgebra. Suppose that as an algebra B is generated by a collection of elements $(g_i)_{i \in I}$. Suppose furthermore that we are given a linear map $\gamma : B \to B$, which is a homomorphism of algebras from $B = (B, \mu, \eta)$ to $B^{\text{op}} = (B, \mu^{\text{op}}, \eta)$, and which satisfies

$$(\mu \circ (\gamma \otimes \mathrm{id}_B) \circ \Delta)(g_i) = \epsilon(g_i) 1_B = (\mu \circ (\mathrm{id}_B \otimes \gamma) \circ \Delta)(g_i) \quad \text{for all } i \in I.$$

Show that $(B, \mu, \Delta, \eta, \epsilon, \gamma)$ is a Hopf algebra.

Exercise 5: A building block of quantum groups

Let $q \in \mathbb{C} \setminus \{0\}$. Let H_q be the algebra with three generators a, a', b and relations

$$a a' = a' a = 1$$
 , $a b = q b a$.

Because of the first relation we can write $a' = a^{-1}$ in H_q . The collection $(b^m a^n)_{m \in \mathbb{N}, n \in \mathbb{Z}}$ is a vector space basis for H_q . We wish to put a Hopf algebra structure on H_q such that the coproducts of a and b are given by

$$\Delta(a) = a \otimes a$$
 and $\Delta(b) = a \otimes b + b \otimes 1$.

- (a) Show that there is a unique bialgebra structure on H_q with the values of the coproduct above.
- (b) Show, for example using the result of *Exercise* 4, that there is a unique Hopf algebra structure on H_q with the values of the coproduct above.
- (c) Compute $\epsilon(b^m a^n)$ and $\gamma(b^m a^n)$, for $m \in \mathbb{N}$, $n \in \mathbb{Z}$, in the Hopf algebra H_q .
- (d) Show that the elements $x = a \otimes b$ and $y = b \otimes 1$ in $H_q \otimes H_q$ satisfy the relation xy = q yx. Then compute $\Delta(b^m a^n)$, for $m \in \mathbb{N}$, $n \in \mathbb{Z}$, in the Hopf algebra H_q . (*Hint*: The q-binomial formula of Problem sheet 4: Exercise 1 may be helpful.)