Problem sheet 5

Exercise 1: Grouplike and primitive elements
Let $(A, \mu, \eta, \Delta, \epsilon, \gamma)$ be a Hopf algebra. An element $a \in A$ is said to be grouplike if $a \neq 0$ and $\Delta(a)=a \otimes a$. An element $x \in A$ is said to be primitive if $\Delta(x)=x \otimes 1_{A}+1_{A} \otimes x$. Show that:
(a) When $a \in A$ is grouplike, we have $\epsilon(a)=1$ and a is invertible and $\gamma(a)=a^{-1}$.
(b) When $x \in A$ is primitive, we have $\epsilon(x)=0$ and $\gamma(x)=-x$.

Exercise 2: Opposite and/or co-opposite bialgebras

Suppose that $A=(A, \mu, \Delta, \eta, \epsilon)$ is a bialgebra. Let $\mu^{\mathrm{op}}=\mu \circ S_{A, A}$ be the opposite product and $\Delta^{\mathrm{cop}}=S_{A, A} \circ \Delta$ be the (co-)opposite coproduct. Show that all of the following are bialgebras:

$$
\text { the opposite bialgebra } A^{\mathrm{op}}=\left(A, \mu^{\mathrm{op}}, \Delta, \eta, \epsilon\right)
$$

the co-opposite bialgebra $A^{\mathrm{cop}}=\left(A, \mu, \Delta^{\mathrm{cop}}, \eta, \epsilon\right)$ the opposite co-opposite bialgebra $A^{\mathrm{op}, \mathrm{cop}}=\left(A, \mu^{\mathrm{op}}, \Delta^{\mathrm{cop}}, \eta, \epsilon\right)$.

Exercise 3: Opposite and/or co-opposite Hopf algebras

Suppose that $(A, \mu, \Delta, \eta, \epsilon)$ is a bialgebra, which admits an antipode $\gamma: A \rightarrow A$.
(a) Show that $A^{\mathrm{op}, \mathrm{cop}}=\left(A, \mu^{\mathrm{op}}, \Delta^{\mathrm{cop}}, \eta, \epsilon, \gamma\right)$ is a Hopf algebra, called the the opposite coopposite Hopf algebra to $A=(A, \mu, \Delta, \eta, \epsilon, \gamma)$.
(b) Show that the following conditions are equivalent

- the opposite bialgebra A^{op} admits an antipode $\tilde{\gamma}$
- the co-opposite bialgebra $A^{\text {cop }}$ admits an antipode $\tilde{\gamma}$
- the antipode $\gamma: A \rightarrow A$ is invertible, with inverse $\gamma^{-1}=\tilde{\gamma}$.

Exercise 4: A lemma for construction of antipode
Let $B=(B, \mu, \Delta, \eta, \epsilon)$ be a bialgebra. Suppose that as an algebra B is generated by a collection of elements $\left(g_{i}\right)_{i \in I}$. Suppose furthermore that we are given a linear map $\gamma: B \rightarrow B$, which is a homomorphism of algebras from $B=(B, \mu, \eta)$ to $B^{\mathrm{op}}=\left(B, \mu^{\mathrm{op}}, \eta\right)$, and which satisfies

$$
\left(\mu \circ\left(\gamma \otimes \operatorname{id}_{B}\right) \circ \Delta\right)\left(g_{i}\right)=\epsilon\left(g_{i}\right) 1_{B}=\left(\mu \circ\left(\operatorname{id}_{B} \otimes \gamma\right) \circ \Delta\right)\left(g_{i}\right) \quad \text { for all } i \in I
$$

Show that $(B, \mu, \Delta, \eta, \epsilon, \gamma)$ is a Hopf algebra.
Exercise 5: A building block of quantum groups
Let $q \in \mathbb{C} \backslash\{0\}$. Let H_{q} be the algebra with three generators a, a^{\prime}, b and relations

$$
a a^{\prime}=a^{\prime} a=1 \quad, \quad a b=q b a
$$

Because of the first relation we can write $a^{\prime}=a^{-1}$ in H_{q}. The collection $\left(b^{m} a^{n}\right)_{m \in \mathbb{N}, n \in \mathbb{Z}}$ is a vector space basis for H_{q}. We wish to put a Hopf algebra structure on H_{q} such that the coproducts of a and b are given by

$$
\Delta(a)=a \otimes a \quad \text { and } \quad \Delta(b)=a \otimes b+b \otimes 1
$$

(a) Show that there is a unique bialgebra structure on H_{q} with the values of the coproduct above.
(b) Show, for example using the result of Exercise 4, that there is a unique Hopf algebra structure on H_{q} with the values of the coproduct above.
(c) Compute $\epsilon\left(b^{m} a^{n}\right)$ and $\gamma\left(b^{m} a^{n}\right)$, for $m \in \mathbb{N}, n \in \mathbb{Z}$, in the Hopf algebra H_{q}.
(d) Show that the elements $x=a \otimes b$ and $y=b \otimes 1$ in $H_{q} \otimes H_{q}$ satisfy the relation $x y=q y x$. Then compute $\Delta\left(b^{m} a^{n}\right)$, for $m \in \mathbb{N}, n \in \mathbb{Z}$, in the Hopf algebra H_{q}.
(Hint: The q-binomial formula of Problem sheet 4: Exercise 1 may be helpful.)

