Problem sheet 4

Exercise 1: The q-binomial formula
Define the q-binomial coefficient, for $n \in \mathbb{N}, 0 \leq k \leq n$, as the following rational function of q

$$
\llbracket \begin{gathered}
n \\
k
\end{gathered} \rrbracket=\frac{\prod_{j=1}^{n}\left(1-q^{j}\right)}{\prod_{j=1}^{k}\left(1-q^{j}\right) \prod_{j=1}^{n-k}\left(1-q^{j}\right)}
$$

Now let $q \in \mathbb{C}$, and denote the value of that rational function at q by

$$
\llbracket \begin{aligned}
& n \\
& k
\end{aligned} \rrbracket_{q}
$$

Suppose A is an algebra and $a, b \in A$ are two elements which satisfy the relation

$$
a b=q b a .
$$

(a) Show that for any $n \in \mathbb{N}$ we have

$$
(a+b)^{n}=\sum_{k=0}^{n} \llbracket\left[\begin{array}{l}
n \\
k
\end{array} \rrbracket_{q} b^{n-k} a^{k} .\right.
$$

(Hint: How would you prove the ordinary binomial formula?)
(b) If $q=e^{\mathrm{i} 2 \pi / n}$, show that $(a+b)^{n}=a^{n}+b^{n}$.

Exercise 2: A coalgebra from trigonometric addition formulas
Let C be a vector space with basis $\{c, s\}$. Define $\Delta: C \rightarrow C \otimes C$ by linear extension of

$$
c \mapsto c \otimes c-s \otimes s \quad, \quad s \mapsto c \otimes s+s \otimes c
$$

Does there exist $\epsilon: C \rightarrow \mathbb{C}$ such that (C, Δ, ϵ) becomes a coalgebra?

Definitions for the last two exercises:

- Let (C, Δ, ϵ) and $\left(C^{\prime}, \Delta^{\prime}, \epsilon^{\prime}\right)$ be two coalgebras. A linear map $f: C \rightarrow C^{\prime}$ is called a homomorphism of coalgebras if for all $a \in C$, with Sweedler's notation for the coproduct $\Delta(a)=\sum_{(a)} a_{(1)} \otimes a_{(2)} \in C \otimes C$, we have

$$
\Delta^{\prime}(f(a))=\sum_{(a)} f\left(a_{(1)}\right) \otimes f\left(a_{(2)}\right) \quad \text { and } \quad \epsilon^{\prime}(f(a))=\epsilon(a)
$$

- Let $(B, \mu, \Delta, \eta, \epsilon)$ and $\left(B^{\prime}, \mu^{\prime}, \Delta^{\prime}, \eta^{\prime}, \epsilon^{\prime}\right)$ be two bialgebras. A linear map $f: B \rightarrow B^{\prime}$ is called a homomorphism of bialgebras if f is a homomorphism of algebras from (B, μ, η) to $\left(B^{\prime}, \mu^{\prime}, \eta^{\prime}\right)$ and a homomorphism of coalgebras from (B, Δ, ϵ) to $\left(B^{\prime}, \Delta^{\prime}, \epsilon^{\prime}\right)$.

Exercise 3: Alternative definitions of bialgebra
Let B be a vector space and suppose that

$$
\begin{array}{ll}
\mu: B \otimes B \rightarrow B & \eta: \mathbb{C} \rightarrow B \\
\Delta: B \rightarrow B \otimes B & \epsilon: B \rightarrow \mathbb{C}
\end{array}
$$

are linear maps such that (B, μ, η) is an algebra and (B, Δ, ϵ) is a coalgebra.
Show that the following conditions are equivalent:
(i) Both Δ and ϵ are homomorphisms of algebras.
(ii) Both μ and η are homomorphisms of coalgebras.
(iii) $(B, \mu, \Delta, \eta, \epsilon)$ is a bialgebra.
"Clarifications": The algebra structure on \mathbb{C} is using the product of complex numbers. The coalgebra structure on \mathbb{C} is such that the coproduct and counit are both identity maps of \mathbb{C} (for coproduct identify $\mathbb{C} \otimes \mathbb{C} \cong \mathbb{C}$, and for the counit note that \mathbb{C} itself is the ground field). The algebra structure on $B \otimes B$ is the tensor product of two copies of the algebra B, i.e. with the product determined by $\left(b^{\prime} \otimes b^{\prime \prime}\right)\left(b^{\prime \prime \prime} \otimes b^{\prime \prime \prime \prime}\right)=b^{\prime} b^{\prime \prime \prime} \otimes b^{\prime \prime} b^{\prime \prime \prime \prime}$. The coalgebra structure in $B \otimes B$ is the tensor product of two copies of the coalgebra B, i.e. when $\Delta\left(b^{\prime}\right)=\sum b_{(1)}^{\prime} \otimes b_{(2)}^{\prime}$ and $\Delta\left(b^{\prime \prime}\right)=\sum b_{(1)}^{\prime \prime} \otimes b_{(2)}^{\prime \prime}$ then the coproduct of $b^{\prime} \otimes b^{\prime \prime}$ is $\sum\left(b_{(1)}^{\prime} \otimes b_{(1)}^{\prime \prime}\right) \otimes\left(b_{(2)}^{\prime} \otimes b_{(2)}^{\prime \prime}\right)$ and counit is simply $b^{\prime} \otimes b^{\prime \prime} \mapsto \epsilon\left(b^{\prime}\right) \epsilon\left(b^{\prime \prime}\right)$.

Exercise 4: Two dimensional bialgebras

(a) Classify all two-dimensional bialgebras up to isomorphism.
(b) Which of the two-dimensional bialgebras admit a Hopf algebra structure?

