Problem sheet 13

Ribbon Hopf algebras:

Let *A* be a braided Hopf algebra with universal R-matrix $R \in A \otimes A$, and denote $R_{21} = S_{A,A}(R)$. Assume that there exists a central element $\theta \in A$ such that

 $\Delta(\theta) = (R_{21}R)^{-1} (\theta \otimes \theta) \quad , \quad \epsilon(\theta) = 1 \quad \text{and} \quad \gamma(\theta) = \theta.$

Then *A* is said to be *ribbon Hopf algebra* and θ is called *ribbon element*.

Exercise 1: Twists in modules over ribbon Hopf algebras

Assume that A is a ribbon Hopf algebra and denote the braiding of A-modules V and W by $c_{V,W}$.

- (a) Show that the ribbon element θ is invertible.
- (b) For any *A*-module *V* define a linear map $\Theta_V : V \to V$ by $\Theta_V(v) = \theta^{-1} . v$ for all $v \in V$. Prove the following:
 - When $f: V \to W$ is an *A*-module map, we have $\Theta_W \circ f = f \circ \Theta_V$.
 - When *V* is an *A*-module, and *V*^{*} is the dual *A*-module we have $\Theta_{V^*} = (\Theta_V)^*$ (the right hand side is the transpose of Θ_V).
 - When *V* and *W* are *A*-modules, we have $\Theta_{V \otimes W} = (\Theta_V \otimes \Theta_W) \circ c_{W,V} \circ c_{V,W}$.

Exercise 2: *Properties of the element u in braided Hopf algebras* Recall that when *A* is a braided Hopf algebra with universal R-matrix $R \in A \otimes A$, we set

$$u = \left(\mu \circ (\gamma \otimes \mathrm{id}_A)\right)(R_{21}).$$

We have seen that $\gamma(\gamma(x)) = u x u^{-1}$ for all $x \in A$ and that $u \gamma(u) = \gamma(u) u$ is central in A.

- (a) Show that $\epsilon(u) = 1$.
- (b) Show that $R_{21} R \Delta(x) = \Delta(x) R_{21} R$ for all $x \in A$.
- (c) Show that

$$\Delta(u) = (R_{21} R)^{-1} (u \otimes u).$$

Hint: This requires the use of almost all the properties of the universal R-matrix that we have seen!

(d) Show that $u \gamma(u^{-1})$ is grouplike.

Exercise 3: The center of $\widetilde{\mathcal{U}}_q(\mathfrak{sl}_2)$ Let q be a root of unity, and assume that the smallest positive integer e such that $q^e \in \{\pm 1\}$ is odd and satisfies $q^e = +1$. Let $A = \widetilde{\mathcal{U}}_q(\mathfrak{sl}_2)$ be the quotient of $\mathcal{U}_q(\mathfrak{sl}_2)$ by the relations $E^e = 0$, $F^e = 0$, $K^e = 1$ (see Problem sheet 10: Exercise 3). A basis of A is

> $E^a F^b K^c$ with $a, b, c \in \{0, 1, 2, \dots, e-1\}.$

(a) Show that the center of A is e-dimensional and a basis of the center is $1, C, C^2, C^3, \ldots, C^{e-1}$, where *C* is the quadratic Casimir

$$C = EF + \frac{1}{(q - q^{-1})^2} \left(q^{-1} K + q K^{-1} \right).$$

Hint: This can be done in different ways, but one possible strategy is the following:

- Describe the subspace of elements commuting with *K*.
- Write down the condition for elements to commute with both K and F, using the formulas of Problem sheet 10: Exercise 3, and from this argue that the dimension of the center is at most e.
- Argue that the powers of *C* are linearly independent central elements.
- (b) Show that the unit is the only grouplike central element in $\tilde{\mathcal{U}}_{q}(\mathfrak{sl}_{2})$.

Exercise 4: The Hopf algebra $\mathcal{U}_q(\mathfrak{sl}_2)$ is ribbon

Let *q* be a root of unity, and assume that the smallest positive integer *e* such that $q^e \in \{\pm 1\}$ is odd and satisfies $q^e = +1$. Then

$$R = \frac{1}{e} \sum_{i,j,k=0}^{e-1} \frac{(q-q^{-1})^k}{[k]_q!} q^{k(k-1)/2 + 2k(i-j)-2ij} E^k K^i \otimes F^k K^j$$

is a universal R-matrix for $A = \widetilde{\mathcal{U}}_{q}(\mathfrak{sl}_{2})$ (see also Problem sheet 12: Exercise 2).

- (a) Show that *K* commutes with $u = (\mu \circ (\gamma \otimes id_A))(R_{21})$.
- (b) Show that $\gamma(\gamma(x)) = K x K^{-1}$ for all $x \in A$. Recalling a similar property of u, show that $K^{-1} u$ is a central element.
- (c) Show that $K^{-2} u \gamma(u^{-1})$ is a grouplike central element. Conclude that $\gamma(K^{-1}u) = K^{-1}u$.
- (d) Show that $\theta = K^{-1} u$ is a ribbon element.

Hint: Use the results of the previous exercises!