Problem sheet 12

Recall:

- When q is a root of unity, we denote by e the smallest positive integer for which $q^{e} \in\{ \pm 1\}$.
- For $\varepsilon \in\{ \pm 1\}$ and $d \in \mathbb{N}$ we have an irreducible $\mathcal{U}_{q}\left(\mathfrak{s l}_{2}\right)$-module W_{d}^{ε} with basis $w_{0}, w_{1}, \ldots, w_{d-1}$ defined by the formulas

$$
\begin{aligned}
\text { K. } w_{j} & =\varepsilon q^{d-1-2 j} w_{j} \\
\text { F. } w_{j} & =w_{j+1} \\
\text { E. } w_{j} & =\varepsilon[j]_{q}[d-j]_{q} w_{j-1}
\end{aligned}
$$

when either q is not a root of unity or when $d<e$ (see lectures and Problem sheet 11: Exercise 2).

- When q is a root of unity, the indecomposable $\mathcal{U}_{q}\left(\mathfrak{s l}_{2}\right)$-module $W_{e}(\mu ; a, b)$ is defined by the formulas

$$
\begin{aligned}
\text { K. } w_{j} & =\mu q^{-2 j} w_{j} & & \text { for } 0 \leq j \leq e-1 \\
\text { F. } w_{j} & =w_{j+1} & & \text { for } 0 \leq j \leq e-2 \\
\text { F. } w_{e-1} & =b w_{0} & & \\
\text { E. } w_{j} & =\left(a b+\frac{[j]_{q}}{q-q^{-1}}\left(\mu q^{1-j}-\mu^{-1} q^{j-1}\right)\right) w_{j-1} & & \text { for } 1 \leq j \leq e-1 \\
\text { E. } w_{0} & =a w_{e-1} & &
\end{aligned}
$$

(see Problem sheet 11: Exercise 4).

Exercise 1: A family of indecomposable $\mathcal{U}_{q}\left(\mathfrak{s l}_{2}\right)$-modules of dimension e when q is a root of unity Let $q \in \mathbb{C}$ be a root of unity. Assume that $e>1$.
(a) Show that $W_{e}(\mu ; a, b)$ is irreducible unless $b=0$ and $\mu \in\left\{ \pm 1, \pm q, \pm q^{2}, \ldots, \pm q^{e-2}\right\}$.
(b) Consider the Hopf algebra $\widetilde{\mathcal{U}}_{q}\left(\mathfrak{s l}_{2}\right)$ which is the quotient of $\mathcal{U}_{q}\left(\mathfrak{s l}_{2}\right)$ by the ideal generated by E^{e}, F^{e} and $K^{e}-1$ (cf. Problem sheet 10: Exercise 3). A $\widetilde{\mathcal{U}}_{q}\left(\mathfrak{s l}_{2}\right)$-module can be thought of as a $\mathcal{U}_{q}\left(\mathfrak{s l}_{2}\right)$-module, where E^{e}, F^{e} and $K^{e}-1$ act as zero. Show that a $\widetilde{\mathcal{U}}_{q}\left(\mathfrak{s l}_{2}\right)$-module V is irreducible if and only if it is irreducible as a $\mathcal{U}_{q}\left(\mathfrak{s l}_{2}\right)$-module.
(c) Consider the modules W_{d}^{ε} for $d<e$, and the modules $W_{e}(\mu ; a, b)$. Find all values of d and ε, and of μ, a, b for which these are irreducible $\widetilde{\mathcal{U}}_{q}\left(\mathfrak{S l}_{2}\right)$-modules in each of the following cases:

- when e is odd and $q^{e}=+1$
(Answer: d anything, $\varepsilon=+1 ; a=0, b=0, \mu=q^{-1}$; in fact $\left.W_{e}\left(q^{-1} ; 0,0\right) \cong W_{e}^{+1}\right)$
- when e is odd and $q^{e}=-1$
(Answer: d anything, $\varepsilon=(-1)^{d-1} ; a=0, b=0, \mu=-q^{-1}$; in fact $W_{e}\left(-q^{-1} ; 0,0\right) \cong W_{e}^{+1}$)
- when e is even
(Answer: d odd, ε anything; no possible values of μ, a, b)

Exercise 2: A solution of Yang-Baxter equation from two-dimensional $\widetilde{\mathcal{U}}_{q}\left(\mathfrak{S l}_{2}\right)$-modules
Let $q \in \mathbb{C}$ be a root of unity. Assume that $e>1$, that e is odd and that $q^{e}=+1$. The finite dimensional algebra $\widetilde{\mathcal{U}}_{q}\left(\mathfrak{s l}_{2}\right)$ is generated by E, F, K with relations

$$
\begin{array}{rlrl}
K E & =q^{2} E K & K F & =q^{-2} F K \\
E^{e} & =0 & F^{e} & =0
\end{array} \quad E F-F E=\frac{1}{q-q^{-1}}\left(K-K^{-1}\right)
$$

It can be shown that the Hopf algebra $\widetilde{\mathcal{U}}_{q}\left(\mathfrak{s l}_{2}\right)$ is braided with the universal R-matrix

$$
R=\frac{1}{e} \sum_{i, j, k=0}^{e-1} \frac{\left(q-q^{-1}\right)^{k}}{[k]_{q}!} q^{k(k-1) / 2+2 k(i-j)-2 i j} E^{k} K^{i} \otimes F^{k} K^{j}
$$

Let V be the two dimensional $\widetilde{\mathcal{U}}_{q}\left(\mathfrak{S I}_{2}\right)$-module W_{2}^{+1} with basis w_{0}, w_{1} and calculate the matrix of

$$
\check{R}=S_{V, V} \circ\left(\rho_{V} \otimes \rho_{V}\right)(R)
$$

in the basis $w_{0} \otimes w_{0}, w_{0} \otimes w_{1}, w_{1} \otimes w_{0}, w_{1} \otimes w_{1}$.
Hint: In the calculations one encounters expressions of type $\sum_{t=0}^{e-1} q^{t s}$, for $s \in \mathbb{Z}$, which can be simplified significantly when q is a root of unity of order e.

Exercise 3: Some tensor products of $\mathcal{U}_{q}\left(\mathfrak{s l}_{2}\right)$-modules
Assume that $q \in \mathbb{C}$ is not a root of unity.
(a) Show that $W_{d}^{\varepsilon} \cong W_{d}^{+1} \otimes W_{1}^{\varepsilon}$.
(b) Let $d_{1} \geq d_{2}>0$ and denote by $w_{0}^{(1)}, w_{1}^{(1)}, \ldots, w_{d_{1}-1}^{(1)}$ and $w_{0}^{(2)}, w_{1}^{(2)}, \ldots, w_{d_{2}-1}^{(2)}$ the bases of $W_{d_{1}}^{+1}$ and $W_{d_{2}}^{+1}$, respectively, chosen as in the beginning of the problem sheet. Consider the module $W_{d_{1}}^{+1} \otimes W_{d_{2}}^{+1}$. Show that for any $l \in\left\{0,1,2, \ldots, d_{2}-1\right\}$ the vector

$$
v=\sum_{s=0}^{l} \frac{(-1)^{s}}{[s]_{q}!} \frac{[l]_{q}!}{[l-s]_{q}!} \frac{\left[d_{1}-1-s\right]_{q}!}{\left[d_{1}-1\right]_{q}!} \frac{\left[d_{2}-l-1+s\right]_{q}!}{\left[d_{2}-l-1\right]_{q}!} q^{s\left(2 l-d_{2}-s\right)} w_{s}^{(1)} \otimes w_{l-s}^{(2)}
$$

is an eigenvector of K and that it satisfies

$$
E . v=0 .
$$

(c) Using the result of (b), conclude that we have the following isomorphism of $\mathcal{U}_{q}\left(\mathfrak{s I}_{2}\right)$-modules

$$
W_{d_{1}}^{+1} \otimes W_{d_{2}}^{+1} \cong W_{d_{1}+d_{2}-1}^{+1} \oplus W_{d_{1}+d_{2}-3}^{+1} \oplus W_{d_{1}+d_{2}-5}^{+1} \oplus \cdots \oplus W_{d_{1}-d_{2}+3}^{+1} \oplus W_{d_{1}-d_{2}+1}^{+1}
$$

