Problem sheet 12

Recall:

- When *q* is a root of unity, we denote by *e* the smallest positive integer for which $q^e \in \{\pm 1\}$.
- For ε ∈ {±1} and d ∈ N we have an irreducible U_q(sl₂)-module W^ε_d with basis w₀, w₁,..., w_{d-1} defined by the formulas

$$K.w_j = \varepsilon q^{d-1-2j} w_j$$

$$F.w_j = w_{j+1}$$

$$E.w_j = \varepsilon [j]_q [d-j]_q w_{j-1}$$

when either q is not a root of unity or when d < e (see lectures and *Problem sheet 11: Exercise* 2).

When *q* is a root of unity, the indecomposable U_q(sl₂)-module W_e(μ; *a*, *b*) is defined by the formulas

$$\begin{split} K.w_{j} &= \mu q^{-2j} w_{j} & \text{for } 0 \leq j \leq e-1 \\ F.w_{j} &= w_{j+1} & \text{for } 0 \leq j \leq e-2 \\ F.w_{e-1} &= b w_{0} & \\ E.w_{j} &= \left(ab + \frac{[j]_{q}}{q-q^{-1}}(\mu q^{1-j} - \mu^{-1}q^{j-1})\right) w_{j-1} & \text{for } 1 \leq j \leq e-1 \\ E.w_{0} &= a w_{e-1} & \end{split}$$

(see Problem sheet 11: Exercise 4).

Exercise 1: A family of indecomposable $\mathcal{U}_q(\mathfrak{sl}_2)$ -modules of dimension e when q is a root of unity Let $q \in \mathbb{C}$ be a root of unity. Assume that e > 1.

- (a) Show that $W_e(\mu; a, b)$ is irreducible unless b = 0 and $\mu \in \{\pm 1, \pm q, \pm q^2, \dots, \pm q^{e-2}\}$.
- (b) Consider the Hopf algebra \$\tilde{U}_q(\vec{sl}_2)\$ which is the quotient of \$\mathcal{U}_q(\vec{sl}_2)\$ by the ideal generated by \$E^e\$, \$F^e\$ and \$K^e 1\$ (cf. Problem sheet 10: Exercise 3). A \$\tilde{U}_q(\vec{sl}_2)\$-module can be thought of as a \$\mathcal{U}_q(\vec{sl}_2)\$-module, where \$E^e\$, \$F^e\$ and \$K^e 1\$ act as zero. Show that a \$\tilde{U}_q(\vec{sl}_2)\$-module \$V\$ is irreducible if and only if it is irreducible as a \$\mathcal{U}_q(\vec{sl}_2)\$-module.
- (c) Consider the modules W_d^{ε} for d < e, and the modules $W_e(\mu; a, b)$. Find all values of d and ε , and of μ, a, b for which these are irreducible $\widetilde{\mathcal{U}}_q(\mathfrak{sl}_2)$ -modules in each of the following cases:
 - when *e* is odd and $q^e = +1$ (*Answer*: *d* anything, $\varepsilon = +1$; $a = 0, b = 0, \mu = q^{-1}$; in fact $W_e(q^{-1}; 0, 0) \cong W_e^{+1}$)
 - when *e* is odd and $q^e = -1$ (*Answer*: *d* anything, $\varepsilon = (-1)^{d-1}$; $a = 0, b = 0, \mu = -q^{-1}$; in fact $W_e(-q^{-1}; 0, 0) \cong W_e^{+1}$)
 - when *e* is even (*Answer: d* odd, ε anything; no possible values of μ , *a*, *b*)

Exercise 2: A solution of Yang-Baxter equation from two-dimensional $\widetilde{\mathcal{U}}_q(\mathfrak{sl}_2)$ -modules Let $q \in \mathbb{C}$ be a root of unity. Assume that e > 1, that e is odd and that $q^e = +1$. The finite dimensional algebra $\widetilde{\mathcal{U}}_q(\mathfrak{sl}_2)$ is generated by E, F, K with relations

$$KE = q^{2} EK KF = q^{-2} FK EF - FE = \frac{1}{q - q^{-1}} (K - K^{-1})$$

$$E^{e} = 0 F^{e} = 0 K^{e} = 1.$$

It can be shown that the Hopf algebra $\widetilde{\mathcal{U}}_q(\mathfrak{sl}_2)$ is braided with the universal R-matrix

$$R = \frac{1}{e} \sum_{i,j,k=0}^{e^{-1}} \frac{(q-q^{-1})^k}{[k]_q!} q^{k(k-1)/2 + 2k(i-j)-2ij} E^k K^i \otimes F^k K^j.$$

Let *V* be the two dimensional $\widetilde{\mathcal{U}}_q(\mathfrak{sl}_2)$ -module W_2^{+1} with basis w_0, w_1 and calculate the matrix of

$$\check{R} = S_{V,V} \circ (\rho_V \otimes \rho_V)(R)$$

in the basis $w_0 \otimes w_0$, $w_0 \otimes w_1$, $w_1 \otimes w_0$, $w_1 \otimes w_1$.

Hint: In the calculations one encounters expressions of type $\sum_{t=0}^{e-1} q^{ts}$, for $s \in \mathbb{Z}$, which can be simplified significantly when q is a root of unity of order e.

Exercise 3: Some tensor products of $\mathcal{U}_q(\mathfrak{sl}_2)$ -modules Assume that $q \in \mathbb{C}$ is not a root of unity.

- (a) Show that $W_d^{\varepsilon} \cong W_d^{+1} \otimes W_1^{\varepsilon}$.
- (b) Let $d_1 \ge d_2 > 0$ and denote by $w_0^{(1)}, w_1^{(1)}, \dots, w_{d_1-1}^{(1)}$ and $w_0^{(2)}, w_1^{(2)}, \dots, w_{d_2-1}^{(2)}$ the bases of $W_{d_1}^{+1}$ and $W_{d_2}^{+1}$, respectively, chosen as in the beginning of the problem sheet. Consider the module $W_{d_1}^{+1} \otimes W_{d_2}^{+1}$. Show that for any $l \in \{0, 1, 2, \dots, d_2 1\}$ the vector

$$v = \sum_{s=0}^{l} \frac{(-1)^{s}}{[s]_{q}!} \frac{[l]_{q}!}{[l-s]_{q}!} \frac{[d_{1}-1-s]_{q}!}{[d_{1}-1]_{q}!} \frac{[d_{2}-l-1+s]_{q}!}{[d_{2}-l-1]_{q}!} q^{s(2l-d_{2}-s)} w_{s}^{(1)} \otimes w_{l-s}^{(2)}$$

is an eigenvector of K and that it satisfies

$$E.v = 0.$$

(c) Using the result of (b), conclude that we have the following isomorphism of $\mathcal{U}_q(\mathfrak{sl}_2)$ -modules

$$W_{d_1}^{+1} \otimes W_{d_2}^{+1} \cong W_{d_1+d_2-1}^{+1} \oplus W_{d_1+d_2-3}^{+1} \oplus W_{d_1+d_2-5}^{+1} \oplus \cdots \oplus W_{d_1-d_2+3}^{+1} \oplus W_{d_1-d_2+1}^{+1}.$$