Problem sheet 11

Exercise 1: A lemma in Drinfeld double

Let $A=(A, \mu, \Delta, \eta, \epsilon, \gamma)$ be a Hopf algebra with invertible antipode, and let A° be its restricted dual Hopf algebra. Below we denote the Drinfeld double associated to A and A° by \mathcal{D}, and the restricted dual Hopf algebra of it by \mathcal{D}°.

Note that if $\phi \in \mathcal{D}^{\circ}$, then since the Hopf algebra A embeds to \mathcal{D} by $\iota_{A}: A \rightarrow \mathcal{D}, a \mapsto a \otimes 1^{*}$, we can define an element $\left.\phi\right|_{A} \in A^{\circ}$ by the formula

$$
\left\langle\left.\phi\right|_{A}, a\right\rangle=\left\langle\phi, \iota_{A}(a)\right\rangle
$$

for all $a \in A$. Furthermore, since the Hopf algebra A° embeds to \mathcal{D} by $\iota_{A^{\circ}}: A^{\circ} \rightarrow \mathcal{D}, \varphi \mapsto 1 \otimes \varphi$, we obtain an element $\hat{\phi} \in \mathcal{D}$ by setting

$$
\hat{\phi}=\iota_{A^{\circ}}\left(\left.\phi\right|_{A}\right)
$$

Show that for all $\phi \in \mathcal{D}^{\circ}$ and $x \in \mathcal{D}$, the following identity holds in \mathcal{D}

$$
\sum_{(\phi),(x)}\left\langle\phi_{(1)}, x_{(2)}\right\rangle x_{(1)} \hat{\phi}_{(2)}=\sum_{(\phi),(x)}\left\langle\phi_{(2)}, x_{(1)}\right\rangle \hat{\phi}_{(1)} x_{(2)}
$$

Exercise 2: Irreducible $\mathcal{U}_{q}\left(\mathfrak{s l}_{2}\right)$-modules of low dimension when q is a root of unity
Let $q \in \mathbb{C}$ be a root of unity and denote by e the smallest positive integer such that $q^{e} \in\{+1,-1\}$. Assume $e>1$. Consider the Hopf algebra $\mathcal{U}_{q}\left(\mathfrak{s l}_{2}\right)$.
(a) For $d<e$ a positive integer and $\varepsilon \in\{ \pm 1\}$, show that the formulas

$$
\begin{aligned}
\text { K. } w_{j} & =\varepsilon q^{d-1-2 j} w_{j} \\
\text { F. } w_{j} & =w_{j+1} \\
E . w_{j} & =\varepsilon[j]_{q}[d-j]_{q} w_{j-1}
\end{aligned}
$$

still define an irreducible $\mathcal{U}_{q}\left(\mathfrak{s l}_{2}\right)$-module W_{d}^{ε} with basis $w_{0}, w_{1}, w_{2}, \ldots, w_{d-1}$.
(b) Show that any irreducible $\mathcal{U}_{q}\left(\mathfrak{s l}_{2}\right)$-module of dimension less than e is isomorphic to a module of the above type.

Hint: Especially for (b), you can just check that the proofs we used when q was not a root of unity work in this case, too. Probably it is not worth going through this in great detail in the exercise session.

Exercise 3: No irreducible $\mathcal{U}_{q}\left(\mathfrak{s l}_{2}\right)$-modules of high dimension when q is a root of unity
Let $q \in \mathbb{C}$ be a root of unity and denote by e the smallest positive integer such that $q^{e} \in\{+1,-1\}$. Assume $e>1$. Suppose that one would have an irreducible $\mathcal{U}_{q}\left(\mathfrak{s l}_{2}\right)$-module V with $\operatorname{dim} V>e$.
(a) If there exists a non-zero eigenvector $v \in V$ of K such that $F . v=0$, then show that the linear span of $v, E . v, E^{2} . v, \ldots, E^{e-1} . v$ is a submodule of V. Conclude that this is not possible if V is irreducible and $\operatorname{dim} V>e$.
(b) If there doesn't exist any non-zero eigenvector $v \in V$ of K such that $F . v=0$, then considering any non-zero eigenvector $v \in V$ of K, show that the linear span of $v, F . v, F^{2} . v, \ldots, F^{e-1} . v$ is a submodule of V. Conclude that this, too, is impossible if V is irreducible and $\operatorname{dim} V>e$.
(c) Conclude that there are no irreducible $\mathcal{U}_{q}\left(\mathfrak{s l}_{2}\right)$-modules of dimension greater than e.

Hint for all parts of the exercise: Recall that K^{e}, E^{e}, F^{e} are central by Problem Sheet 10: Exercise 3, and remember also the central element $C=E F+\frac{1}{\left(q-q^{-1}\right)^{2}}\left(q^{-1} K+q K^{-1}\right)$.

Exercise 4: A family of indecomposable $\mathcal{U}_{q}\left(\mathfrak{s l}_{2}\right)$-modules of dimension e when q is a root of unity
Let $q \in \mathbb{C}$ be a root of unity and denote by e the smallest positive integer such that $q^{e} \in\{+1,-1\}$.
Assume $e>1$. Consider the Hopf algebra $\mathcal{U}_{q}\left(\mathfrak{s l}_{2}\right)$.
(a) Let $\mu, a, b \in \mathbb{C}$ with $\mu \neq 0$. Show that the following formulas define an e-dimensional $\mathcal{U}_{q}\left(\mathfrak{s I}_{2}\right)$-module with basis $w_{0}, w_{1}, w_{2}, \ldots, w_{e-1}$:

$$
\begin{aligned}
\text { K. } w_{j} & =\mu q^{-2 j} w_{j} & & \text { for } 0 \leq j \leq e-1 \\
\text { F. } w_{j} & =w_{j+1} & & \text { for } 0 \leq j \leq e-2 \\
\text { F. } w_{e-1} & =b w_{0} & & \\
\text { E. } w_{j} & =\left(a b+\frac{[j]_{q}}{q-q^{-1}}\left(\mu q^{1-j}-\mu^{-1} q^{j-1}\right)\right) w_{j-1} & & \text { for } 1 \leq j \leq e-1 \\
\text { E. } w_{0} & =a w_{e-1} & &
\end{aligned}
$$

Denote this module by $W_{e}(\mu ; a, b)$.
(b) Show that $W_{e}(\mu ; a, b)$ is indecomposable, that is, it can not be written as a direct sum of two non-zero submodules.
(c) Show that $W_{e}(\mu ; a, b)$ is irreducible unless $b=0$ and $\mu \in\left\{ \pm 1, \pm q, \pm q^{2}, \ldots, \pm q^{e-2}\right\}$.
(d) Consider the Hopf algebra $\widetilde{\mathcal{U}}_{q}\left(\mathfrak{s l}_{2}\right)$ which is the quotient of $\mathcal{U}_{q}\left(\mathfrak{s l}_{2}\right)$ by the ideal generated by E^{e}, F^{e} and $K^{e}-1$ (cf. Problem sheet 10: Exercise 3). A $\widetilde{\mathcal{U}}_{q}\left(\mathfrak{s l}_{2}\right)$-module can be thought of as a $\mathcal{U}_{q}\left(\mathfrak{s l}_{2}\right)$-module, where E^{e}, F^{e} and $K^{e}-1$ act as zero. Show that a $\widetilde{\mathcal{U}}_{q}\left(\mathfrak{s l}_{2}\right)$-module V is irreducible if and only if it is irreducible as a $\mathcal{U}_{q}\left(\mathfrak{s l}_{2}\right)$-module.
(e) Consider the modules W_{d}^{ε} of Exercise 2, for $d<e$, and the modules $W_{e}(\mu ; a, b)$. Find all values of d and ε, and of μ, a, b for which these are irreducible $\widetilde{\mathcal{U}}_{q}\left(\mathfrak{S l}_{2}\right)$-modules in each of the following cases:

- when e is odd and $q^{e}=+1$
(Answer: d anything, $\varepsilon=+1 ; a=0, b=0, \mu=q^{-1} ;$ in fact $\left.W_{e}\left(q^{-1} ; 0,0\right) \cong W_{e}^{+1}\right)$
- when e is odd and $q^{e}=-1$
(Answer: d anything, $\varepsilon=(-1)^{d-1} ; a=0, b=0, \mu=-q^{-1}$; in fact $W_{e}\left(-q^{-1} ; 0,0\right) \cong W_{e}^{+1}$)
- when e is even
(Answer: d odd, ε anything; no possible values of μ, a, b)

