Problem sheet 10

Exercise 1: A central element in D_{q}
Let q be a non-zero complex number which is not a root of unity, and let $D_{q}=\mathcal{D}\left(H_{q}, H_{q}^{\prime}\right)$ be the Hopf algebra which as an algebra is generated by $\alpha, \alpha^{-1}, \beta, \tilde{\alpha}, \tilde{\alpha}^{-1}, \tilde{\beta}$ with relations

$$
\begin{aligned}
\alpha \alpha^{-1} & =1=\alpha^{-1} \alpha \\
\alpha \beta & =q \beta \alpha \\
\alpha \tilde{\beta} & =q^{-1} \tilde{\beta} \alpha \\
\alpha \tilde{\alpha} & =\tilde{\alpha} \alpha
\end{aligned}
$$

$$
\begin{aligned}
\tilde{\alpha} \tilde{\alpha}^{-1} & =1=\tilde{\alpha}^{-1} \tilde{\alpha} \\
\tilde{\alpha} \tilde{\beta} & =q \tilde{\beta} \tilde{\alpha} \\
\tilde{\alpha} \beta & =q^{-1} \beta \tilde{\alpha} \\
\tilde{\beta} \beta-\beta \tilde{\beta} & =\alpha-\tilde{\alpha} .
\end{aligned}
$$

Consider an element of the form

$$
v=\tilde{\beta} \beta+r \alpha+s \tilde{\alpha}
$$

Find values $r, s \in \mathbb{C}$ such that v is central in D_{q}.
Exercise 2: Some q-formulas
In $D_{q^{2}}$ and in $\mathcal{U}_{q}\left(\mathfrak{s l}_{2}\right)$ we prefer to use modified q-integers and q-factorials. Define the following rational functions of an indeterminate q

$$
[n]=\frac{q^{n}-q^{-n}}{q-q^{-1}} \quad[n]!=[n][n-1] \cdots[2][1] \quad\left[\begin{array}{l}
n \\
k
\end{array}\right]=\frac{[n]!}{[k]![n-k]!}
$$

When $q \in \mathbb{C} \backslash\{0\}$ we denote the values of these rational functions at q by adding a subscript q to the above notations. Recall also that $\llbracket n \rrbracket=\left(1-q^{n}\right) /(1-q)$ is a rational function of q and $\llbracket n \rrbracket_{q}$ its value at $q \in \mathbb{C} \backslash\{0\}$.

Show the following properties of the (symmetric) q-integers, q-factorials and q-binomials
(a) $[n]=q^{n-1}+q^{n-3}+\cdots+q^{-n+3}+q^{-n+1}$ and $[n]_{q}=q^{1-n} \llbracket n \rrbracket_{q^{2}}$
(b) $[m+n]=q^{n}[m]+q^{-m}[n]=q^{-n}[m]+q^{m}[n]$
(c) $[l][m-n]+[m][n-l]+[n][l-m]=0$
(d) $[n]=[2][n-1]-[n-2]$.

Exercise 3: A finite dimensional quotient of $\mathcal{U}_{q}\left(\mathfrak{s l}_{2}\right)$ when q is a root of unity
Let $q \in \mathbb{C} \backslash\{0,1,-1\}$ and consider the algebra $\mathcal{U}_{q}\left(\mathfrak{s l}_{2}\right)$.
(a) Prove that for all $k \geq 1$ one has

$$
\begin{aligned}
& E F^{k}-F^{k} E=\frac{[k]_{q}}{q-q^{-1}} F^{k-1}\left(q^{1-k} K-q^{k-1} K^{-1}\right) \\
& F E^{k}-E^{k} F=\frac{[k]_{q}}{q-q^{-1}}\left(q^{k-1} K^{-1}-q^{1-k} K\right) E^{k-1}
\end{aligned}
$$

Now suppose that $q \notin\{+1,-1\}$ is a root of unity and denote by e the smallest positive integer such that $q^{e} \in\{+1,-1\}$.
(b) Show that the elements E^{e}, K^{e}, F^{e} are central in $\mathcal{U}_{q}\left(\mathfrak{s l}_{2}\right)$.
(c) Let J be two sided ideal in the algebra $\mathcal{U}_{q}\left(\mathfrak{s l}_{2}\right)$ generated by the central elements E^{e}, F^{e} and $K^{e}-1$. Show that J is a Hopf ideal in the Hopf algebra $\mathcal{U}_{q}\left(\mathfrak{s l}_{2}\right)$. Show that the quotient Hopf algebra $\widetilde{\mathcal{U}}_{q}\left(\mathfrak{s l}_{2}\right)=\mathcal{U}_{q}\left(\mathfrak{s l}_{2}\right) / J$ is finite dimensional.

Exercise 4: A first step of a calculation for diagonalization of α in $D_{q^{2}}$-modules
Let q be a non-zero complex number which is not a root of unity, and let $D_{q^{2}}$ be the algebra generated by $\alpha, \alpha^{-1}, \beta, \tilde{\alpha}, \tilde{\alpha}^{-1}, \tilde{\beta}$ with relations

$$
\begin{aligned}
\alpha \alpha^{-1} & =1=\alpha^{-1} \alpha & \tilde{\alpha} \tilde{\alpha}^{-1} & =1=\tilde{\alpha}^{-1} \tilde{\alpha} \\
\alpha \beta & =q^{2} \beta \alpha & \tilde{\alpha} \tilde{\beta} & =q^{2} \tilde{\beta} \tilde{\alpha} \\
\alpha \tilde{\beta} & =q^{-2} \tilde{\beta} \alpha & \tilde{\alpha} \beta & =q^{-2} \beta \tilde{\alpha} \\
\alpha \tilde{\alpha} & =\tilde{\alpha} \alpha & \tilde{\beta} \beta-\beta \tilde{\beta} & =\alpha-\tilde{\alpha} .
\end{aligned}
$$

(a) Let $c \in D_{q^{2}}$ be a central element (examples are $\mathcal{K}=\alpha \tilde{\alpha}$ and the element v found in Exercise 1). Show that for any irreducible $D_{q^{2}}$-module V, there is a constant $\lambda \in \mathbb{C}$ such that on V, the element c acts as $\lambda \mathrm{id}_{V}$.
(b) Suppose that V is a finite dimensional $D_{q^{2}}$-module, of dimension d. By considering generalized eigenspaces of α (or of $\tilde{\alpha}$), show that the elements β^{k} and $\tilde{\beta}^{k}$ must act as zero on V for any $k \geq d$.
(c) Find polynomials $P(\alpha, \tilde{\alpha}), Q(\alpha, \tilde{\alpha}), R(\alpha, \tilde{\alpha})$ of α and $\tilde{\alpha}$ such that the following equation holds

$$
P(\alpha, \tilde{\alpha}) \beta^{2} \tilde{\beta}^{2}+Q(\alpha, \tilde{\alpha}) \beta \tilde{\beta}^{2} \beta+R(\alpha, \tilde{\alpha}) \tilde{\beta}^{2} \beta^{2}=\left(q \alpha-q^{-1} \tilde{\alpha}\right)(\alpha-\tilde{\alpha})\left(q^{-1} \alpha-q \tilde{\alpha}\right)
$$

(d) Suppose that V is a $D_{q^{2}}$-module where the central element $\kappa=\alpha \tilde{\alpha}$ acts as $\lambda \mathrm{id}_{V}$ and where $\tilde{\beta}^{2}$ acts as zero. Show, using the result of (c), that α and $\tilde{\alpha}$ are diagonalizable on V and the eigenvalues of both are among

$$
\pm \sqrt{\lambda} q^{-1}, \pm \sqrt{\lambda}, \pm \sqrt{\lambda} q
$$

Conclude in particular that in any two-dimensional $\mathcal{U}_{q}\left(\mathfrak{s l}_{2}\right)$-module, K is diagonalizable and its possible eigenvalues are $\pm 1, \pm q, \pm q^{-1}$.

