7.4.2011

Problem sheet 10

Exercise 1: A central element in D_q

Let *q* be a non-zero complex number which is not a root of unity, and let $D_q = \mathcal{D}(H_q, H'_q)$ be the Hopf algebra which as an algebra is generated by α , α^{-1} , β , $\tilde{\alpha}$, $\tilde{\alpha}^{-1}$, $\tilde{\beta}$ with relations

Consider an element of the form

$$\nu = \tilde{\beta}\beta + r\alpha + s\tilde{\alpha}.$$

Find values $r, s \in \mathbb{C}$ such that v is central in D_q .

Exercise 2: *Some q-formulas*

In D_{q^2} and in $\mathcal{U}_q(\mathfrak{sl}_2)$ we prefer to use modified *q*-integers and *q*-factorials. Define the following rational functions of an indeterminate *q*

$$[n] = \frac{q^n - q^{-n}}{q - q^{-1}} \qquad [n]! = [n][n - 1] \cdots [2][1] \qquad \begin{bmatrix} n \\ k \end{bmatrix} = \frac{[n]!}{[k]! [n - k]!}.$$

When $q \in \mathbb{C} \setminus \{0\}$ we denote the values of these rational functions at q by adding a subscript q to the above notations. Recall also that $\llbracket n \rrbracket = (1 - q^n)/(1 - q)$ is a rational function of q and $\llbracket n \rrbracket_q$ its value at $q \in \mathbb{C} \setminus \{0\}$.

Show the following properties of the (symmetric) *q*-integers, *q*-factorials and *q*-binomials

(a) $[n] = q^{n-1} + q^{n-3} + \dots + q^{-n+3} + q^{-n+1}$ and $[n]_q = q^{1-n} [[n]]_{q^2}$

(b)
$$[m+n] = q^n [m] + q^{-m} [n] = q^{-n} [m] + q^m [n]$$

- (c) [l][m-n] + [m][n-l] + [n][l-m] = 0
- (d) [n] = [2] [n-1] [n-2].

Exercise 3: A finite dimensional quotient of $\mathcal{U}_q(\mathfrak{sl}_2)$ when q is a root of unity Let $q \in \mathbb{C} \setminus \{0, 1, -1\}$ and consider the algebra $\mathcal{U}_q(\mathfrak{sl}_2)$.

(a) Prove that for all $k \ge 1$ one has

$$E F^{k} - F^{k} E = \frac{[k]_{q}}{q - q^{-1}} F^{k-1} \left(q^{1-k} K - q^{k-1} K^{-1} \right)$$

$$F E^{k} - E^{k} F = \frac{[k]_{q}}{q - q^{-1}} \left(q^{k-1} K^{-1} - q^{1-k} K \right) E^{k-1}.$$

Now suppose that $q \notin \{+1, -1\}$ is a root of unity and denote by *e* the smallest positive integer such that $q^e \in \{+1, -1\}$.

- (b) Show that the elements E^e , K^e , F^e are central in $\mathcal{U}_q(\mathfrak{sl}_2)$.
- (c) Let *J* be two sided ideal in the algebra $\mathcal{U}_q(\mathfrak{sl}_2)$ generated by the central elements E^e , F^e and $K^e 1$. Show that *J* is a Hopf ideal in the Hopf algebra $\mathcal{U}_q(\mathfrak{sl}_2)$. Show that the quotient Hopf algebra $\widetilde{\mathcal{U}}_q(\mathfrak{sl}_2) = \mathcal{U}_q(\mathfrak{sl}_2) / J$ is finite dimensional.

Exercise 4: A first step of a calculation for diagonalization of α in D_{q^2} -modules

Let *q* be a non-zero complex number which is not a root of unity, and let D_{q^2} be the algebra generated by α , α^{-1} , β , $\tilde{\alpha}$, $\tilde{\alpha}^{-1}$, $\tilde{\beta}$ with relations

$\alpha \alpha^{-1} = 1 = \alpha^{-1} \alpha$	$\tilde{\alpha}\tilde{\alpha}^{-1} = 1 = \tilde{\alpha}^{-1}\tilde{\alpha}$
$\alpha\beta = q^2 \beta\alpha$	$\tilde{\alpha}\tilde{\beta} = q^2 \; \tilde{\beta}\tilde{\alpha}$
$\alpha \tilde{\beta} = q^{-2} \tilde{\beta} \alpha$	$\tilde{\alpha}\beta = q^{-2} \beta \tilde{\alpha}$
$\alpha \tilde{\alpha} = \tilde{\alpha} \alpha$	$\tilde{\beta}\beta - \beta\tilde{\beta} = \alpha - \tilde{\alpha}.$

- (a) Let $c \in D_{q^2}$ be a central element (examples are $\kappa = \alpha \tilde{\alpha}$ and the element ν found in *Exercise* 1). Show that for any irreducible D_{q^2} -module V, there is a constant $\lambda \in \mathbb{C}$ such that on V, the element c acts as $\lambda \operatorname{id}_V$.
- (b) Suppose that *V* is a finite dimensional D_{q^2} -module, of dimension *d*. By considering generalized eigenspaces of α (or of $\tilde{\alpha}$), show that the elements β^k and $\tilde{\beta}^k$ must act as zero on *V* for any $k \ge d$.
- (c) Find polynomials $P(\alpha, \tilde{\alpha})$, $Q(\alpha, \tilde{\alpha})$, $R(\alpha, \tilde{\alpha})$ of α and $\tilde{\alpha}$ such that the following equation holds

$$P(\alpha, \tilde{\alpha}) \beta^2 \tilde{\beta}^2 + Q(\alpha, \tilde{\alpha}) \beta \tilde{\beta}^2 \beta + R(\alpha, \tilde{\alpha}) \tilde{\beta}^2 \beta^2 = (q \alpha - q^{-1} \tilde{\alpha}) (\alpha - \tilde{\alpha}) (q^{-1} \alpha - q \tilde{\alpha})$$

(d) Suppose that *V* is a D_{q^2} -module where the central element $\kappa = \alpha \tilde{\alpha}$ acts as $\lambda \operatorname{id}_V$ and where $\tilde{\beta}^2$ acts as zero. Show, using the result of (c), that α and $\tilde{\alpha}$ are diagonalizable on *V* and the eigenvalues of both are among

$$\pm \sqrt{\lambda} q^{-1}, \pm \sqrt{\lambda}, \pm \sqrt{\lambda} q.$$

Conclude in particular that in any two-dimensional $\mathcal{U}_q(\mathfrak{sl}_2)$ -module, *K* is diagonalizable and its possible eigenvalues are ± 1 , $\pm q$, $\pm q^{-1}$.