
Dependence Logic, Spring 2011
Supplementary notes

Juha Kontinen

May 4, 2011

1 Supplementary material to the lecture of 31.3
We discuss the proof of the following equivalence from the lectures.

Proposition 1.1. ∃xn∃xmφ ≡∗ ∃xm∃xnφ.

Proof. LetM be a structure andX a team. We will show that if (∃xn∃xmφ,X, 1) ∈
TM, then (∃xm∃xnφ,X, 1) ∈ TM. The converse implication follows by sym-
metry. Furthermore, the equivalence

(∃xn∃xmφ,X, 0) ∈ TM ⇔ (∃xm∃xnφ,X, 0) ∈ TM,

follows from the fact that

(∀xn∀xm¬φ,X, 1) ∈ TM ⇔ (∀xm∀xn¬φ,X, 1) ∈ TM,

which has been shown in the lectures.
Let us then assume that (∃xn∃xmφ,X, 1) ∈ TM. This implies that

(φ,X(F/xn)(G/xm), 1) ∈ TM for some F : X →M , and G : X(F/xn)→M .
In order to show that (∃xm∃xnφ,X, 1) ∈ TM, it suffices to define analogues
F ∗ and G∗ of F and G, respectively, such that

X(G∗/xm)(F ∗/xn) ⊆ X(F/xn)(G/xm), (1)

since then, by the Closure Test, we get

(φ,X(G∗/xm)(F ∗/xn), 1) ∈ TM,

and (∃xm∃xnφ,X, 1) ∈ TM.

1

We will next define the functions F ∗ and G∗. Define G∗ : X → M as
follows: for s ∈ X,

G∗(s) = G(s(F (s)/xn)). (2)

It is easy to see that G∗ is well defined. Let us then define F ∗ : X(G∗/xm)→
M . Now, we are faced with the possibility that, for s ∈ X(G∗/xm), there
might be several s′ ∈ X for which

s′(G∗(s′)/xm) = s. (3)

The idea is now to choose for each s ∈ X(G∗/xm) one such s′ and to define
F ∗ using the function F . In other words, we define F ∗ : X(G∗/xm)→ M as
follows: for s ∈ X(G∗/xm), we pick s′ ∈ X such that (3) holds and define

F ∗(s) = F (s′). (4)

Again, it is obvious that F ∗ is well-defined.
We still need to show that (1) holds. Let t ∈ X(G∗/xm)(F ∗/xn), s = t �

dom(X)∪{xm}, and s′ ∈ X the assignment such that F ∗(s) = F (s′) (see (4)).
Note that, because of this, t(xn) = F ∗(s) = F (s′). On the other hand, by (3)
it holds that G∗(s′) = s(xm) and thus by (2) we get that t(xm) = s(xm) =
G∗(s′) = G(s′(F (s′)/xn)). This shows that t = s′(F (s′)/xn)(G(r)/xm),
where r = s′(F (s′)/xn), and t ∈ X(F/xn)(G/xm).

The following example illustrates the fact that the inclusion in (1) can be
strict.

Example 1.2. Let M be a model with M = {0, 1}. Consider the following
team X of M with domain {x1, x2}:

x1 x2

s1 0 1
s2 0 0

(5)

Define F : X → M so that s1 7→ 1 and s2 7→ 0. Define then G : X(F/x1)→
M so that G(s) = 0 for all s. It is easy to verify that X(F/x1)(G/x2) is the
team:

x1 x2

s3 1 0
s4 0 0

(6)

Let us now try to define F ∗ and G∗ which would allow us to swap to order of
supplementation. We want to define G∗ : X → M that agrees with G. Note

2

that since s(x2) = 0 for all s ∈ X(F/x1)(G/x2), we have to define G∗ so that
G∗(s) = 0 for all s ∈ X. Then X(G∗/x2) is the team

x1 x2

s4 0 0
(7)

and now, for F ∗ we have to possibilities; we can map s4 ∈ X(G∗/x2) either
to 0 or 1 and in both cases

X(G∗/x2)(F
∗/x1) (X(F/x1)(G/x2).

2 Supplementary material to the lecture of 21.4
The main result (Theorem 6.15 in [Vää07]) of this lecture is the following:

Theorem 2.1. For every sentence φ ∈ Σ1
1[L] there is a sentence φ∗ ∈ D[L]

such that, for all structuresM:

M |= φ⇔M |= φ∗.

Proof. We discuss the last part of the proof and, for the first parts, refer to
the course textbook [Vää07]. First of all, we may assume that φ is in Skolem
normal form:

φ := ∃f1 . . . ∃fn∀x1 . . . ∀xmψ, (8)

where ψ is quantifier-free. Furthermore, we may assume that for every func-
tion symbol gr ∈ {f1, . . . , fn} ∪ L appearing in ψ there is a unique tuple
xr1, . . . , x

r
kr

of distinct variables such that all occurrences of gr in ψ are of the
form g(xr1, . . . , x

r
kr

) (see pages 96-97 in [Vää07] on how to achieve this).
We are now ready to translate the sentence (8) into dependence logic:

φ∗ := ∀x1 . . . ∀xm∃xm+1 . . . ∃xm+n(
∧

1≤j≤n

=(xj1, . . . , x
j
kj
, xm+j) ∧ ψ′), (9)

where ψ′ is obtained from ψ by replacing all occurrences of the term fj(x
j
1, . . . , x

j
kj

)
by the variable xm+j. We will next show that the sentences φ and φ∗ are in-
deed logically equivalent. Note first that it suffices to show the following:

? For allM and Fi : Mki →M , for 1 ≤ i ≤ n:

(M, F1, . . . , Fn) |= ∀x1 . . . ∀xmψ ⇔M |=X(G1/xm+1)···(Gn/xm+n) ψ
′,

3

where X = {∅}(M/x1) · · · (M/xm) (essentially the set of all m-tuples of M)
and the supplement function

Gi : X(G1/xm+1) · · · (Gi−1/xm+i−1)→M

is defined using Fi as follows:

Gi(s) = F (s(xi1), . . . , s(x
i
ki

)). (10)

It is important to note that there is a one-to-one correspondence between
the functions Fi and the supplement functions Gi that satisfy the dependence
formula

=(xi1, . . . , x
i
ki
, xm+i).

In particular, Gi was defined in (10) in such a way that this dependence atom
will be satisfied.

Let us first assume that (?) holds and show the equivalence of φ and φ∗.
Let M be a structure and assume that M |= φ. Then there are functions
F1, . . . , Fn such that

(M, F1, . . . , Fn) |= ∀x1 . . . ∀xmψ.

By (?), we get that

M |=X(G1/xm+1)···(Gn/xm+n) ψ
′,

where Gi is defined as in (10). By definition, the functions Gi satisfy the
required dependencies, and hence we get that

M |=X(G1/xm+1)···(Gn/xm+n) (
∧

1≤j≤n

=(xj1, . . . , x
j
kj
, xm+j) ∧ ψ′).

By the semantics of the existential quantifier of dependence logic, we get that

M |=X ∃xm+1 . . . ∃xm+n(
∧

1≤j≤n

=(xj1, . . . , x
j
kj
, xm+j) ∧ ψ′),

and by the semantics of the universal quantifier:

M |= ∀x1 . . . ∀xm∃xm+1 . . . ∃xm+n(
∧

1≤j≤n

=(xj1, . . . , x
j
kj
, xm+j) ∧ ψ′).

The converse implication is analogous. In other words, assuming M |= φ∗

we can showM |= φ by reversing the steps above.

4

Let us then show that (?) holds. We will first show that for all s ∈
X(G1/xm+1) · · · (Gn/xm+n)

(M, F1, . . . , Fn) |=s′ ψ ⇔M |=s ψ
′, (11)

where s′ = s � {x1, . . . , xm}. We can prove this using induction on ψ for
all quantifier-free formulas. The induction goes through since the interpre-
tation xm+i〈s〉 of the variable xm+i agrees with the interpretation of the
term fi(x

i
1, . . . , x

i
ki

)〈s′〉: xm+i〈s〉 = s(xm+i) = Gi(s � {x1, . . . , xm+i−1}) =
Fi(s(x

i
1), . . . , s(x

i
ki

)) = Fi(s
′(xi1), . . . , s

′(xiki
)) = fi(x

i
1, . . . , x

i
ki

)〈s′〉.
Let us now prove (?). Assume (M, F1, . . . , Fn) |= ∀x1 . . . ∀xmψ. Then for

all s′ : {x1, . . . , xm} → M it holds that (M, F1, . . . , Fn) |=s′ ψ. By (11), we
get that for all s ∈ X(G1/xm+1) · · · (Gn/xm+n): M |=s ψ

′ and, since ψ′ is a
first-order formula of dependence logic

M |=X(G1/xm+1)···(Gn/xm+n) ψ
′. (12)

Let us then assume that (12) holds. By downward closure and the fact
that ψ′ is first-order, we get that for all s ∈ X(G1/xm+1) · · · (Gn/xm+n):
M |=s ψ

′. Now we use again (11) to get that for all s′ : {x1, . . . , xm} → M :
(M, F1, . . . , Fn) |=s′ ψ, and finally that (M, F1, . . . , Fn) |= ∀x1 . . . ∀xmψ.
This completes the proof of (?) as hence the claim of the theorem.

Theorem 2.1 gives us a normal form for sentences of dependence logic:

Corollary 2.2. Every sentence φ ∈ D is logically equivalent to a sentence
φ∗ ∈ D of the form

∀x1 . . . ∀xm∃xm+1 . . . ∃xm+nψ,

where ψ is quantifier-free.

Proof. Let φ ∈ D be a sentence. Then there is a sentence τ1,φ of Σ1
1 that is

logically equivalent to φ. By Theorem 2.1, there is a sentence φ∗ ∈ D of the
required form that is logically equivalent to τ1,φ, and thus to φ.

It is important to note that Theorem 2.1 applies only to sentences of
dependence logic and it does not characterize formulas of dependence logic
with free variables. We have seen that for every formula φ(x1, . . . , xk) ∈ D[L]
there is a sentence τ1,φ(S) ∈ Σ1

1[L ∪ {S}] such that for allM and teams X
with domain {x1, . . . , xk}

M |=X φ⇔ (M, rel(X)) |= τ1,φ(S).

5

However, this result only gives us an upperbound for the complexity of open
formulas of dependence logic. We also know that all formulas of dependence
logic satisfy downward closure and hence not all sentences of Σ1

1[L∪{S}] cor-
respond to formula of dependence logic. On the syntactic level, downward
closure is reflected by the fact that the relation symbol S appears in τ1,φ(S)
only negatively, that is, all subformulas of τ1,φ(S) involving S are of the form
¬S(t1, ..., tk).We will next show that S appearing only negatively is the syn-
tactic counterpart of downwards monotonicity (in other words, downwards
closure).

Definition 2.3. Let φ ∈ Σ1
1[L ∪ {R}], where φ is in negation normal form

and R is a k-ary relation symbol.

• We say that φ is downwards monotone with respect to R, if for all
L ∪ {R} structures (M, A) (where A ⊆Mk interprets R) and B ⊆ A:

(M, A) |= φ⇒ (M, B) |= φ.

• We say that R appears in φ only negatively, if all subformulas of φ
involving R are of the form ¬R(t1, ..., tk).

The following now holds:

Proposition 2.4. Let φ ∈ Σ1
1[L∪{R}], where φ is in negation normal form.

Then

• if R appears only negatively in φ, then φ is downwards monotone with
respect to R.

• if φ is downwards monotone with respect to R, then there is a Σ1
1-

formula φ∗ logically equivalent to φ in which R appears only negatively.

The next theorem shows that formulas of dependence logic correspond
exactly to the negative (downwards monotone) fragment of Σ1

1:

Theorem 2.5. [KV09] For every sentence ψ ∈ Σ1
1[L ∪ {R}], where R k-ary

and in which R appears only negatively, there is φ(x1, . . . , xk) ∈ D[L] such
that, for allM and teams X with domain {x1, . . . , xk}:

M |=X φ ⇐⇒ (M, rel(X)) |= ψ ∨ ∀y¬R(y).

The disjunct ∀y¬R(y) is needed since X = ∅ satisfies all formulas of D
but ψ need not always be true if rel(X) = ∅.

Theorem 2.5 characterizes the expressive power of formulas of dependence
logic with free variables. It is proved using the same idea as Theorem 2.1
and it implies, in particular, that the normal form of Corollary 2.2 holds for
all formulas of dependence logic.

6

3 Supplementary material to the lecture of 28.4
In this lecture we review some basics of computational complexity theory.

In computational complexity theory algorithmic problems are encoded as
languages over finite alphabets Σ.

Definition 3.1. An alphabet Σ is a finite set of symbols. The set of all finite
Σ-strings with positive length is denoted by Σ+. A language L is a subset of
Σ+.

The complexity of an algorithmic problem (encoded as a language) can
be measured by the resources a Turing machine needs to decide the problem.

Definition 3.2. Let Σ be a finite alphabet and L ⊆ Σ+.

• A deterministic Turing machine N decides L, if for all w ∈ Σ+: if
w ∈ L then N accepts w and if w /∈ L then N rejects w.

• A nondeterministic Turing machine N decides L, if for all w ∈ Σ+: if
w ∈ L then at least one of N ′s computations with input w accepts and
if w /∈ L then all of N ’s computations with input w reject.

• For f : N → N, A TM N decides L in time f , if N decides L and for
each w ∈ Σ+ all computations of N with input w stop after at most
f(|w|) many computation steps.

• For f : N → N, A TM N decides L in space f , if N decides L and
for each w ∈ Σ+ all computations of N use at most f(|w|) cells on the
worktape(s) of N .

The class P (NP) contains those languages L, for which there is a deter-
ministic (nondeterministic) TM N and a polynomial p ∈ N[x] s.t. N decides
L in time p. Analogously, the class L (NL) contains those languages L, for
which there is a deterministic (nondeterministic) TMN and a constant c such
that N decides L in space c log(|w|). It is known that L ⊆ NL ⊆ P ⊆ NP.

In order to compare the complexity of different problems, we need the
notion of reduction.

Definition 3.3. Let L1 ⊆ Σ+ and L2 ⊆ T+.

1. We say that L1 is log-space reducible to L2 if there is a function f : Σ+ →
T+, computable by a log-space bounded deterministic TM, such that for
all w ∈ Σ+:

w ∈ L1 ⇔ f(w) ∈ L2.

7

2. A language L is complete for a complexity class C if L ∈ C and all
languages L′ ∈ C can be reduced to L.

Example 3.4. We consider propositional formulas F in conjunctive normal
form, i.e., F is of the form ∧

i

αi,

where αi :=
∨
j lj and lj is of the form pk or ¬pk for some propositional

symbol pk. We consider the following problems:

2-SAT := {F |F satisfiable and |αi| ≤ 2}

3-SAT := {F |F satisfiable and |αi| ≤ 3}

It is easy to check that, e.g., (p1 ∨ p2) ∧ (p3 ∨ ¬p1) is an instance of 2-SAT.
It is known that 2-SAT is complete for NL and 3-SAT for NP.

3.1 Descriptive complexity theory

Computational complexity was originally defined by measuring the time and
space used in a computation. In 1974, Ronald Fagin [Fag74] showed that the
complexity class NP, the problems computable in non-deterministic polyno-
mial time, is exactly the set of problems describable in existential second-
order logic. This result showed that the complexity of a problem can be un-
derstood as the richness of a formal language needed to specify the problem.
The research program which has followed Fagin’s seminal result is referred
to as Descriptive Complexity Theory.

In order to state the result of Fagin, we first need to fix an ecoding of
finite structures into strigs.

Let L = {R1, . . . , Rm} be a vocabulary. Fix a L-structureM. We assume
that Dom(M) = {0, . . . , n − 1} for some n (other possibility is to let the
domain be any finite set and assume that the structure is equipped with
an ordering). Now each relation RMi can be encoded by a binary string
bin(RMi) of length nri , where ri is the arity of Ri, such that “1” in a given
position indicates that the corresponding tuple in the lexicographic ordering
of Dom(M)ri is in RMi . The binary encoding bin(M) ofM is defined as the
concatenation of the bit strings coding its relations:

bin(M) = bin(RM1) · · · bin(RMm).

Given a class K of L-structures, we write

LK = {bin(M) | M ∈ K}

8

for the language corresponding to K. Now that we have encoded classes
of structures to languages over alphabet {0, 1}, we can formulate the result
(Σ1

1 ≡ NP) of Fagin more precisely. Fagin showed that for all L and all classes
K of L-structures (closed under isomorphisms) the following are equivalent:

1. K is the class of models of some L-sentence φ ∈ Σ1
1,

2. LK ∈ NP.

Since on the level of sentences the logics Σ1
1 and D are equivalent, we get

that
D ≡ NP.

4 Supplementary material to the lecture of 2.5
In this lecture we discuss the complexity of quantifier-free formulas of depen-
dence logic. The material discussed here is contained in [Kon10]. We first
introduce a notion called coherence that is useful in classifying quantifier-free
formulas according to their complexity. The quantifier-free formulas consid-
ered below may freely use the connectives ∧ and ∨ but negation is only
allowed in front of atomic formulas.

Definition 4.1. Let φ(x1, . . . , xn) ∈ D be quantifier-free. We say that φ
is k-coherent (k ∈ N) if for all structures M and teams X with domain
{x1, . . . , xn}:

M |=X φ⇔ for all Y ⊆ X(if |Y | = k, thenM |=Y φ).

Note that the direction ” ⇒ ” above holds for any formula φ by down-
wards closure. Note further that if |X| < k, then a k-coherent formula is
trivially satisfied.

The following proposition lists some observations about coherence.

Proposition 4.2. Let φ and ψ be quantifier-free formulas of D.

1. If φ is a first-order formula, then φ is 1-coherent,

2. If φ is of the form =(t1, . . . , tn), then φ is 2-coherent,

3. If φ is k-coherent and ψ is l-coherent, for some l ≤ k, then φ ∧ ψ is
k-coherent,

4. If φ is 1-coherent and ψ is k-coherent, then φ ∨ ψ is k-coherent,

9

5. If φ is of the form ∨1≤j≤kψj, where ψj is the formula =(t1, . . . , tn), then
φ is k + 1-coherent.

Next we show that if φ is k-coherent for some k ∈ N, then the Σ1
1-sentence

τ1,φ corresponding to φ can be replaced by a FO-sentence.

Theorem 4.3. Let L = {R1, . . . , Rm} and let φ(x1, . . . , xn) ∈ D[L] be
quantifier-free. Assume that φ is k-coherent for some k ∈ N. Then there
is a sentence φ∗ ∈ FO[L ∪ {S}] such that for all structuresM and teams X
with domain {x1, . . . , xn}:

M |=X φ⇔ (M, rel(X)) |= φ∗.

Before we prove Theorem 4.3, we discuss the following lemma used in the
proof. For the lemma, we need the notion of a substructure:

Definition 4.4. Let L = {R1, . . . , Rm} and letM be a L-structure. For any
set B ⊆ M we denote by M|B the substructure of M generated by B, that
is, the domain of M|B is B and RM|Bi = RMi ∩ Bli, where li is the arity of
Ri.

LetM be a L-structure and X a team of M with domain {x1, . . . , xn}.
Let AX ⊆M be defined as follows

AX = {a ∈M | s(xi) = a, for some s ∈ X and 1 ≤ i ≤ n}.

Lemma 4.5. Let φ be as in Theorem 4.3. Then for all structures M and
teams X with domain {x1, . . . , xn}:

M |=X φ⇔M|AX |=X φ.

Proof. We prove using induction on φ that for allM, X and sets AX ⊆ B ⊆
M :

M |=X φ⇔M|B |=X φ.

The claim is trivial for atomic and negated atomic formulas. Also the case of
conjunction is straightforward. We consider the case φ is of the form ψ1∨ψ2.
Assume thatM |=X φ and let B such that AX ⊆ B ⊆ M . Then there is a
partition X = Y ∪ Z such that

M |=Y ψ1 andM |=Z ψ2.

By the induction hypothesis, we get thatM|B |=Y ψ1 andM|B |=Z ψ2 since
obviously B ⊇ AX contains both of the sets AY and AZ . Therefore, it holds

10

that M|B |=X φ. Let us then assume that M|B |=X φ. Then there is a
partition X = Y ∪ Z such that

M|B |=Y ψ1 andM|B |=Z ψ2.

By the induction hypothesis

M |=Y ψ1 andM |=Z ψ2,

and hence alsoM |=X φ.

We are now ready for the proof of Theorem 4.3:

Proof of Theorem 4.3. Since φ is k-coherent, for all structuresM and teams
X with domain {x1, . . . , xn}:

M |=X φ⇔ for all Y ⊆ X(if |Y | = k, thenM |=Y φ).

By Lemma 4.5,
M |=Y φ⇔M|AY |=Y φ.

Note that since |Y | = k, the set AY has at most kn elements. Furthermore,
since the vocabulary L is finite, there are only finitely many non-isomorphic
L ∪ {S}-structures of size at most kn. Let

A1, . . . ,Ar,

list all isomorphism types of such structures and define I such that

I = {1 ≤ j ≤ r | Aj = (M′, rel(Y)) andM′ |=Y φ}.

We are now ready to define the sentence ϕ∗ ∈ FO[L∪{S}] (below we abbre-
viate xi1 . . . xin by xi):

∀x1
1 . . . ∀x1

n∀x2
1 . . . ∀x2

n . . . ∀xk1 . . . ∀xkn((
∧

1≤t≤k

S(xt1, . . . , x
t
n)

∧
∧
i 6=j

xi 6= xj)→
∨
j∈I

θj),

where θj expresses that the substructure generated by (the interpretations of)
{x1

1, . . . , x
1
n, . . . , x

k
1, . . . , x

k
n} with S interpreted as {x1, . . . , xk} is isomorphic

to the structure Aj. So the sentence φ∗ expresses over (M, rel(X)) that all
the relevant small substructures (M′, rel(Y)) of this structure are such that
M′ |=Y φ. By k-coherence of φ, φ and φ∗ are logically equivalent.

We end this section by noting that not all quantifier-free formulas are
coherent [Kon10]:

Theorem 4.6. The formula =(x1, x2)∨ =(x3, x4) is not k-coherent for any
k ∈ N.

11

4.1 The complexity of quantifier-free formulas of depen-
dence logic

Definition 4.7. Let L = {R1, . . . , Rm} and let φ(x1, . . . , xn) ∈ D[L] be
quantifier-free. Let

Kφ = {(M, rel(X)) | M |=X φ},

and let Lφ ⊆ {0, 1}+ be the language encoding the class Kφ.

We can now meaningfully discuss the complexity of quantifier-free formu-
las φ of dependence logic by referring to the complexity of the language Lφ.
Theorem 4.3, and the fact that FO ⊆ L, immediately implies the following:

Corollary 4.8. If φ is k-coherent for some k ∈ N, then Lφ ∈ L, that is, it
can de decided by a deterministic TM using only logarithmic space.

Theorem 4.9. Suppose that φ and ψ are 2-coherent formulas. Then Lφ∨ψ ∈
NL.

References
[Fag74] Ronald Fagin. Generalized first-order spectra and polynomial-time

recognizable sets. In Complexity of computation (Proc. SIAM-AMS
Sympos. Appl. Math., New York, 1973), pages 43–73. SIAM–AMS
Proc., Vol. VII. Amer. Math. Soc., Providence, R.I., 1974.

[Kon10] Jarmo Kontinen. Coherence and Complexity in Fragments of De-
pendence Logic. PhD thesis, University of Amsterdam, 2010.

[KV09] Juha Kontinen and Jouko Väänänen. On definability in dependence
logic. J. Log. Lang. Inf., 18(3):317–332, 2009.

[Vää07] Jouko Väänänen. Dependence logic: A New Approach to Indepen-
dence Friendly Logic, volume 70 of London Mathematical Society
Student Texts. Cambridge University Press, Cambridge, 2007.

12

