Dependence logic

Problems 1
Tuesday 22.3.2011

1. For a first-order formula ϕ, let us consider the operations $\phi \mapsto \phi^{p}$ and $\phi \mapsto \phi^{d}$. Show that ϕ^{p} and ϕ^{d} are always in negation normal form. Show also that $\left(\phi^{d}\right)^{d}=\left(\phi^{p}\right)^{p}=\phi^{p}$.
2. Show that ϕ^{p} is logically equivalent to ϕ and ϕ^{d} to $\neg \phi$.
3. Let $M=\{0,1,2\}$. Consider the following team X of M with domain $\left\{x_{0}, x_{1}, x_{2}\right\}$:

	x_{0}	x_{1}	x_{2}
s_{0}	1	2	2
s_{1}	2	1	2
s_{2}	0	1	2

Is X of type ϕ (that is, does $M \models_{X} \phi$ hold) if:

1. $\phi:=x_{0}=x_{2}$ or $\phi:=\neg x_{0}=x_{2}$
2. $\phi:=\exists x_{0}\left(x_{0}=x_{2}\right)$
3. $\phi:=\forall x_{3}=\left(x_{2}\right)$
4. $\phi:=\left(=\left(x_{0}, x_{1}\right) \vee=\left(x_{1}, x_{2}\right)\right)$
5. Let $\mathcal{M}=\left(M, R^{\mathcal{M}}\right)$ where $R^{\mathcal{M}} \subseteq M^{3}$ and $\phi:=\forall x_{0} \forall x_{1} \exists x_{2} R\left(x_{0}, x_{1}, x_{2}\right)$. Show that $\mathcal{M}=_{\{\emptyset\}} \phi$ if and only if ϕ is true in \mathcal{M} as a sentence of firstorder logic. Let $\psi:=\forall x_{0} \forall x_{1} \exists x_{2}\left(=\left(x_{0}, x_{2}\right) \wedge R\left(x_{0}, x_{1}, x_{2}\right)\right)$. Can you find a first-order sentence equivalent to ψ ?
6. Show that $\models \forall x_{0} \forall x_{1}\left(x_{1}=c \rightarrow=\left(x_{0}, x_{1}\right)\right)$.
7. Let $\mathcal{M}=(\mathbb{N},+, \times, 0,1)$. Which teams X of \mathcal{M} with domain $\left\{x_{0}, x_{1}\right\}$ are of type
8. $=\left(x_{0}, x_{0}+x_{1}\right)$
9. $=\left(x_{0} \times x_{0}, x_{1} \times x_{1}\right)$
