
Computational Statistics
Second course exam, 13 May 2011.

1. Consider a statistical model with a univariate parameter θ which has a continuous
distribution. We want to estimate E[k(Θ) | Y = y], i.e., the posterior expectation of k(θ).
Explain how it can be approximated if we set up an evenly spaced grid on the θ-axis and
evaluate the prior, the likelihood and k(θ) on the grid points. Explain how the approximation
is related to the midpoint rule for numerical integration.

2. Consider a statistical model with a positive parameter θ > 0 which has a continuous
distribution. We want to simulate the posterior distribution. Describe (in pseudocode) a
Metropolis–Hastings sampler which is based on the following simulation idea. If θ > 0 is the
current state of the chain, then generate a value v from the Exp(1) distribution and propose
the state θ′ = v θ.

3. Consider the model, where Yi:s are independent conditionally on the parameter vector
(ϕ, γ, τ) and where

[Yi | ϕ, γ, τ ] ∼ Bin(k, ϕ), 1 ≤ i ≤ τ

[Yi | ϕ, γ, τ ] ∼ Bin(k, γ), τ + 1 ≤ i ≤ n.

The sample size k ≥ 1 of the binomial is a known constant. The change point 1 ≤ τ ≤ n− 1
as well as the probability parameters 0 < ϕ < 1 and 0 < γ < 1 are unknown. The priors are:
the discrete uniform distribution on 1, . . . , n− 1 for τ ; the beta distribution Be(a1, b1) for ϕ;
and the beta distribution Be(a2, b2) for γ. Here a1, b1, a2, b2 are fixed values. The parameters
are independent in the joint prior.

Present one step (where you update all three of the parameters) for the systematic scan
Gibbs sampler, which tries to simulate from the posterior. Denote the state of the chain at
the beginning of the iteration by (ϕi, γi, τi), and at its end by (ϕi+1, γi+1, τi+1). You should
work out all the distributions from which one needs to simulate.

4. We consider a k-variate statistical model whose likelihood function and prior density
we have implemented in a computer program. We know that the posterior is roughly of
multivariate normal form. We have available an optimization routine, which can calculate
the maximum or the minimum point of any multivariate function we care to program. What
is more, we have available a numerical differentiation routine which can calculate reliably the
gradient (the vector of first derivatives) and the Hessian (the matrix of second derivatives) of
any smooth multivariate function at any point on its domain. (If you do not feel comfortable
with multivariate calculus, you may assume that k = 1.)

a) Given these tools, explain how we can calculate the center b and precision matrix Q of a
multivariate normal distribution Nk(b,Q

−1) which approximates the posterior.

b) Explain how we can calculate an approximation to the marginal likelihood of the model
with Laplace approximation.

c) We can check the accuracy of the Laplace approximation by importance sampling, where
we draw values from the k-variate tk(ν, b, Q

−1) distribution with degrees of freedom pa-
rameter ν = 4, center b and dispersion parameter Q−1. Explain how this importance
sampling estimator for the marginal likelihood works. Assume that we have available
functions for generating i.i.d. samples and for evaluating the density function for this
multivariate t distribution.
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Familiar distributions

Binomial distribution Bin(n, p), n positive integer, 0 ≤ p ≤ 1, has pmf

Bin(x | n, p) =

(
n

x

)
px(1− p)n−x, x = 0, 1, . . . , n.

Poisson distribution Poi(θ) with parameter θ > 0 has pmf

Poi(x | θ) = e−θ
θx

x!
, x = 0, 1, 2, . . .

Beta distribution Be(a, b) with parameters a > 0, b > 0 has pdf

Be(x | a, b) =
1

B(a, b)
xa−1(1− x)b−1, 0 < x < 1.

B(a, b) is the beta function with arguments a and b,

B(a, b) =

∫ 1

0

ua−1(1− u)b−1 du =
Γ(a) Γ(b)

Γ(a+ b)
.

Exponential distribution Exp(λ) with rate λ > 0 has pdf

Exp(x | λ) = λ e−λx, x > 0.

Gamma distribution Gam(a, b) with parameters a > 0, b > 0 has pdf

Gam(x | a, b) =
ba

Γ(a)
xa−1e−bx, x > 0.

Γ(a) is the gamma function,

Γ(a) =

∫ ∞
0

xa−1e−x dx, a > 0.

It satisfies Γ(a+ 1) = aΓ(a) for all a > 0, and Γ(1) = 1, and therefore Γ(n) = (n− 1)!,
when n = 1, 2, 3, . . .

Normal distribution N(µ, σ2) with mean µ and variance σ2 > 0 has pdf

N(x | µ, σ2) =
1

σ
√

2π
exp

(
−1

2

(x− µ)2

σ2

)
.

Multivariate normal distribution (in d dimensions), Nd(µ,Q
−1) with mean µ ∈ Rd and

precision matrix Q (a symmetric, positive definite d× d matrix) has pdf

Nd(x | µ,Q−1) = (2π)−d/2(detQ)1/2 exp

(
−1

2
(x− µ)TQ(x− µ)

)
.

(Precision matrix is by definition the inverse of the covariance matrix of the distribu-
tion.)
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