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Calderón problem

Medical imaging, Electrical Impedance Tomography:
{

div(γ(x)∇u) = 0 in Ω,

u = f on ∂Ω

where Ω ⊆ R
n bounded domain, γ ∈ L∞(Ω) positive.



Calderón problem

Medical imaging, Electrical Impedance Tomography:
{

div(γ(x)∇u) = 0 in Ω,

u = f on ∂Ω

where Ω ⊆ R
n bounded domain, γ ∈ L∞(Ω) positive.

Boundary measurements given by DN map

Λγ : f 7→ γ∇u · ν|∂Ω.

Inverse problem: given Λγ, determine γ.



Calderón problem

Major results:

Calderón (1980): linearized problem

Sylvester-Uhlmann (1987): n ≥ 3, γ ∈ C∞(Ω)

Nachman (1996): n = 2, γ ∈ W 2,p(Ω)

Astala-Päivärinta (2006): n = 2, γ ∈ L∞(Ω)



Anisotropic problem

We are interested in the anisotropic case, where

γ(x) = (γjk(x))nj,k=1

is a symmetric positive definite matrix.

The conductivity of the medium depends on the direction.
This is relevant in applications (e.g. imaging muscle).
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Anisotropic problem

Dirichlet problem
{

div(γ(x)∇u) = 0 in Ω,

u = f on ∂Ω

where Ω ⊆ R
n bounded domain, γ = (γjk) ∈ L∞(Ω)

positive definite matrix. Boundary measurements

Λγ : f 7→ γ∇u · ν|∂Ω.

Inverse problem: given Λγ, determine γ = (γjk).



Obstruction

There is an obstruction to uniqueness. If F : Ω → Ω is a
diffeomorphism with F |∂Ω = id∂Ω, then

ΛF∗γ = Λγ .

Here F∗γ is the pushforward

F∗γ(y) =
DF ◦ γ ◦ (DF )t

det(DF )

∣

∣

∣

F−1(y)
.



Anisotropic problem

Conjecture 1. Let γ1, γ2 ∈ C∞(Ω) be two symmetric positive
definite matrices. If Λγ1

= Λγ2
, then

γ2 = F∗γ1

for some diffeomorphism F : Ω → Ω with F |∂Ω = id∂Ω.



Anisotropic problem

Conjecture 1. Let γ1, γ2 ∈ C∞(Ω) be two symmetric positive
definite matrices. If Λγ1

= Λγ2
, then

γ2 = F∗γ1

for some diffeomorphism F : Ω → Ω with F |∂Ω = id∂Ω.

Sylvester (1990): n = 2, small conductivities

Nachman (1996): n = 2, γ ∈ W 2,p

Astala-Lassas-Päivärinta (2005): n = 2, γ ∈ L∞

For n ≥ 3 this is an important open problem.



Geometric problem

There is a geometric formulation of the problem.



Geometric problem

There is a geometric formulation of the problem.

Let (M, g) be a compact smooth Riemannian manifold
with boundary ∂M . The Laplace-Beltrami operator ∆g on
M is given by

∆gu =
n
∑

j,k=1

1√
det g

∂

∂xj

(

√

det g gjk
∂u

∂xk

)

,

where g = (gjk), g
−1 = (gjk).



Geometric problem

Consider Dirichlet problem
{

∆gu = 0 in M,

u = f on ∂M.

Boundary measurements

Λg : f 7→ ∂νu|∂M .



Geometric problem

Consider Dirichlet problem
{

∆gu = 0 in M,

u = f on ∂M.

Boundary measurements

Λg : f 7→ ∂νu|∂M .

Inverse problem: given Λg, determine g.
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diffeomorphism with F |∂M = id∂M , then ΛF ∗g = Λg.



Obstruction

Similar obstruction as for conductivity. If F : M → M is a
diffeomorphism with F |∂M = id∂M , then ΛF ∗g = Λg.

Conjecture 2. Let (M, g1) and (M, g2) compact smooth manifolds
with boundary. If Λg1 = Λg2 , then

g2 = F ∗g1

where F : M → M diffeomorphism with F |∂M = id∂M .

That is, does Λg determine (M, g) up to isometry?



Results

Known results on Conjecture 2 if n ≥ 3:

Lee-Uhlmann (1989): g real-analytic

Lassas-Uhlmann (2001), Lassas-Taylor-Uhlmann
(2003): g real-analytic, removed topological
assumptions

Guillarmou-Sa Barreto (2007): g Einstein (then g is
real-analytic except on ∂M )



Results

Known results on Conjecture 2 if n ≥ 3:

Lee-Uhlmann (1989): g real-analytic

Lassas-Uhlmann (2001), Lassas-Taylor-Uhlmann
(2003): g real-analytic, removed topological
assumptions

Guillarmou-Sa Barreto (2007): g Einstein (then g is
real-analytic except on ∂M )

These are based on boundary determination and
analyticity.
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The standard method of complex geometrical optics
solutions has not been available in the anisotropic case.
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Complex geometrical optics

The standard method of complex geometrical optics
solutions has not been available in the anisotropic case.

Our results are based on an extension of the complex
geometrical optics method to a class of Riemannian
manifolds.

To do this, we adapt the Carleman estimate approach of
Kenig-Sjöstrand-Uhlmann (2007) to geometric setting.



Limiting Carleman weights

Need complex geometrical optics solutions

u = eτ(ϕ+iψ)(a + r) (cf. u = eρ·x(1 + r))

to ∆gu = 0.
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Need complex geometrical optics solutions

u = eτ(ϕ+iψ)(a + r) (cf. u = eρ·x(1 + r))

to ∆gu = 0.

Here τ is a large parameter, and ϕ is a limiting Carleman
weight (LCW): the Carleman estimate

‖eτϕu‖L2(M) ≤
C

τ
‖eτϕ∆gu‖L2(M),

holds both for ϕ and −ϕ.



Limiting Carleman weights

Need complex geometrical optics solutions

u = eτ(ϕ+iψ)(a + r) (cf. u = eρ·x(1 + r))

to ∆gu = 0.

Here τ is a large parameter, and ϕ is a limiting Carleman
weight (LCW): the Carleman estimate

‖eτϕu‖L2(M) ≤
C

τ
‖eτϕ∆gu‖L2(M),

holds both for ϕ and −ϕ.

Examples in R
n: ϕ(x) = x1 and ϕ(x) = log |x|.
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Theorem 1. A simply connected manifold (M, g) admits an LCW if
and only if it is conformally transversally anisotropic.
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Characterization

Theorem 1. A simply connected manifold (M, g) admits an LCW if
and only if it is conformally transversally anisotropic.

Examples of such manifolds:

1. bounded domains in R
n, Sn r {p0}, Hn

2. conformally flat manifolds, e.g. 3D symmetric spaces

3. bounded domains (Ω, g) in R
n where

g(x1, x
′) = c(x)

(

1 0

0 g0(x
′)

)

.



Euclidean case

In Euclidean space, we can characterize all LCWs.



Euclidean case

In Euclidean space, we can characterize all LCWs.

Theorem 2. If ϕ is an LCW in (Ω, e) where Ω ⊆ R
n, n ≥ 3, then

ϕ(x) = aϕ0(x − x0) + b,

where ϕ0 is one of the following:

x · ξ, log |x|, x · ξ
|x|2 , arctan

x · ξ
x · η ,

arctan
2x · ξ

|x|2 − |ξ|2 , arctanh
2x · ξ

|x|2 + |ξ|2 .
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In earlier results, one recovers coefficients via explicit
transforms (Fourier) or by analytic microlocal analysis.
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We recover integrals of the coefficients over geodesics
(and use Fourier transform in the Euclidean directions).



Recovering coefficients

In earlier results, one recovers coefficients via explicit
transforms (Fourier) or by analytic microlocal analysis.

We recover integrals of the coefficients over geodesics
(and use Fourier transform in the Euclidean directions).

To ensure injectivity of certain geodesic ray transforms,
we need another condition on the manifold.



Attenuated ray transform

Definition. A compact manifold (M, g) with boundary is called
simple if it has no conjugate points, and ∂M is strictly convex.



Attenuated ray transform

Definition. A compact manifold (M, g) with boundary is called
simple if it has no conjugate points, and ∂M is strictly convex.

Theorem. Let (M, g) be simple and f ∈ C∞(M). Suppose that

∫

γ

f(γ(t)) dt = 0

for all geodesics γ going from ∂M into M . Then f = 0.



Attenuated ray transform

Definition. A compact manifold (M, g) with boundary is called
simple if it has no conjugate points, and ∂M is strictly convex.

Theorem 3. Let (M, g) be simple, a ∈ C∞(M) sufficiently small,
and f ∈ C∞(M). Suppose that

∫

γ

f(γ(t)) exp

[
∫ t

0
a(γ(s)) ds

]

dt = 0

for all geodesics γ going from ∂M into M . Then f = 0.



Attenuated ray transform

Definition. A compact manifold (M, g) with boundary is called
simple if it has no conjugate points, and ∂M is strictly convex.

Theorem 3’. Let (M, g) be simple, a ∈ C∞(M) and n = 2,
and f ∈ C∞(M). Suppose that

∫

γ

f(γ(t)) exp

[
∫ t

0
a(γ(s)) ds

]

dt = 0

for all geodesics γ going from ∂M into M . Then f = 0.

Joint work with Gunther Uhlmann (2010).
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Admissible manifolds

Conformally flat manifolds are admissible, if the domains
have appropriate size.

If Ω ⊆ R
n, then (Ω, g) is admissible when

g(x1, x
′) = c(x)

(

1 0

0 g0(x
′)

)

with g0 simple.

The class of admissible manifolds is stable under small
perturbations of g0.
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Recovering a potential

Consider Dirichlet problem
{

(−∆g + q)u = 0 in M,

u = f on ∂M.

Boundary measurements

Λg,q : f 7→ ∂νu|∂M .

Theorem 4. Let (M, g) be admissible and q1, q2 ∈ C∞(M). If
Λg,q1 = Λg,q2 , then q1 = q2.

Also possible to recover a magnetic field.
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Recovering a conformal factor

Consider the original geometric problem
{

∆gu = 0 in M,

u = f on ∂M.

Boundary measurements

Λg : f 7→ ∂νu|∂M .

Theorem 5. Let (M, g1) and (M, g2) be admissible manifolds in the
same conformal class. If Λg1 = Λg2 , then g1 = g2.



Maxwell equations

Consider the Maxwell equations in Ω ⊆ R
3,

{

∇× E = iωµH,

∇× H = −iωεE

with boundary condition

Etan|∂Ω = f.



Maxwell equations

Consider the Maxwell equations in Ω ⊆ R
3,

{

∇× E = iωµH,

∇× H = −iωεE

with boundary condition

Etan|∂Ω = f.

Boundary measurements

Λε,µ : f 7→ Htan|∂Ω.



Maxwell equations

Theorem 6. (KSU 2009) Let ε and µ be 2-tensors conformal to

(

1 0

0 g0(x
′)−1

)

where g0 is a simple metric in 2D. Then Λε,µ determines ε and µ

uniquely.



Maxwell equations

Theorem 6. (KSU 2009) Let ε and µ be 2-tensors conformal to

(

1 0

0 g0(x
′)−1

)

where g0 is a simple metric in 2D. Then Λε,µ determines ε and µ

uniquely.

Earlier results:

Ola-Päivärinta-Somersalo (1993): scalar ε and µ

Greenleaf-Kurylev-Lassas-Uhlmann (2007):
nonuniqueness (invisibility) for exotic ε and µ
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