Presentation at Finland Workshop 2010
March 4, 2010, Helsinki

Reconstruction of complex obstacles by singular sources of higher-order

Jijun Liu

Department of Mathematics, Southeast University
Nanjing, 210096, P.R.China
jjliu@seu.edu.cn
This is a joint-work with Dr. M.Sini at RICAM,
Academy Science of Austria

CONTENTS

(3) Part 1 Inverse scattering problems
(3) Part 2 Reconstruction of a complex obstacle
(3) Part 3 The efficient computational algorithm
(3) Part 4 Numerical implementations

1 Inverse scattering problems

Description of the problem

Physical configuration:

Let $D \subset \mathbb{R}^{m}: m=2,3$ is an impenetrable obstacle. For given incident wave $u^{i}(x), u(x)=$ $u^{i}(x)+u^{s}(x)$ outside of D meets

$$
\left\{\begin{array}{l}
\Delta u+k^{2} u=0, x \in \mathbb{R}^{m} \backslash \bar{D} \\
\mathcal{B} u=0, x \in \partial D \\
\lim _{r \rightarrow \infty} r^{(m-1) / 2}\left(\frac{\partial u^{s}(x)}{\partial r}-i k u^{s}(x)\right)=0, r=|x|,
\end{array}\right.
$$

Specify the boundary operator \mathcal{B} :

- Sound-soft: $\left.u\right|_{\partial D}=0$
- Sound-hard: $\left.\partial_{\nu} u\right|_{\partial D}=0$
- Impedance boundary: $\partial_{\nu(x)} u+\left.i \lambda u\right|_{\partial D}=0$

Description of the problem

Scattered wave representation:

$$
u^{s}(x)=\frac{e^{i k r}}{r^{(m-1) / 2}}\left[u^{\infty}(\hat{x})+O\left(\frac{1}{r}\right)\right], \quad r \rightarrow \infty .
$$

$u^{\infty}(\hat{x})$: far-field pattern of the scattered wave.

Inverse scattering.
Reconstruction of a
The efficient.
Numerical.

Page 4 of 49

Go Back

Description of the problem

$\overline{\text { Given incident plane wave }} u^{i}(x, d)=e^{i k d \cdot x}$ for direction d.

Scattering and inverse scattering

- Direct scattering: Find scattered wave for given obstacle D.
- Inverse scattering: Detect the obstacle D from the information about u^{s}, including the geometric property (shape) and physical property (type/impedance).
- If D degenerates into a crack Γ, determine the shape of Γ and the physical property in both sides of Γ.

2 Reconstruction of a complex obstacle A "complex" obstacle

By a "complex" obstacle, we mean

- The obstacle is impenetrable and has different acoustic property at different part of ∂D, and/or
- The impedance coefficient may be complex, or
- The obstacle is a crack, with different property in its two sides.

The inverse scattering problems:

- Determine the boundary shape ∂D
- Determine the boundary type at different part of ∂D
- Determine the complex impedance coefficient

Special attention:

The effect of boundary curvature and boundary impedance on the reconstruction accuracy?

We find:

- The introduction of imaginary part of boundary impedance coefficient can change the visibility of the obstacle essentially.
- The suitable distribution of boundary impedance in terms of the boundary curvature can make the obstacle more (or less) accurate.

We believe:
This observation has some potential application in some industry design problems.

References

1. J.J.Liu, M.Sini, How to make an obstacle more (or less) visible from exterior measurements, submit to J. Inverse and Ill-posed Problems.
2. J.J.Liu, M.Sini, On the accuracy of the numerical detection of complex obstacles from far field data using the probe method, SIAM J. Scientific Computing, Vol.31, No.4, 2009.
3. J.J.Liu, M.Sini, Reconstruction of cracks of different types from far field measurements, to appear in Mathematical Methods in Applied Science.
4. J.J.Liu, G.Nakamura, M.Sini, Reconstruction of the shape and surface impedance from acoustic scattering data for arbitrary cylinder, SIAM J. Applied Mathematics, Vol.67, No.4, 2007.

Description of the problem

For $D \subset \mathbb{R}^{2}$ with $\partial D \in C^{2,1}$, assume

$$
\partial D=\overline{\partial D_{I}} \cup \overline{\partial D_{D}}, \partial D_{I} \cap \partial D_{D}=\emptyset,
$$

where ∂D_{D} and ∂D_{I} are open curves in ∂D.
For $u^{i}(x)=e^{i \kappa d \cdot x}$, the total wave $u(x)=u^{i}(x)+$ $u^{s}(x)$ satisfies

$$
\begin{cases}\Delta u+\kappa^{2} u=0 & \text { in } \mathbb{R}^{2} \backslash \bar{D}, \tag{1}\\ u=0 & \text { on } \partial D_{D}, \\ \frac{\partial u}{\partial \nu}+i \kappa \sigma u=0 & \text { on } \partial D_{I},\end{cases}
$$

where the scattered fields u^{s} satisfies the Sommerfeld radiation condition.

Description of the problem

Assume that the surface impedance $\sigma(x)$:= $\sigma^{r}(x)+i \sigma^{i}(x)$ is a Lipschitz function, $\sigma^{r}(x)$ has a uniform lower bound $\sigma_{0}^{r}>0$ on ∂D_{I}.
∂D_{I} : the coated part, ∂D_{D} : the non-coated part.
Given $u^{\infty}(\cdot, \cdot)$ on $\mathbb{S} \times \mathbb{S}$, we need to

- Reconstruct ∂D;
- Reconstruct some geometrical properties of ∂D such as normal directions and the curvature;
- Distinguish ∂D_{I} from ∂D_{D};
- Reconstruct the complex surface impedance $\sigma(x)$ on ∂D_{I}.

Indicator function for boundary

Compared with our work in 2007, here we use the far-field data to construct the indicator directly. probe method:
Use detecting points z outside of D to approach ∂D, consider the asymptotic behavior of the indicator.

Assume $\bar{D} \subset \subset \Omega$ for known Ω. For $a \in \Omega \backslash D$, denote by $\left\{z_{p}\right\} \subset \Omega \backslash \bar{D}$ a sequence tending to a. For any z_{p}, set D_{a}^{p} a C^{2}-regular domain such that $\bar{D} \subset D_{a}^{p}$ (resp. $\overline{\partial D} \subset D_{a}^{p}$) with $z_{q} \in \Omega \backslash \overline{D_{a}^{p}}$ for every $q=1,2, \cdots, p$ and that the Dirichlet interior problem on D_{a}^{p} for the Helmholtz equation is uniquely solvable.

Geometric configuration of approximation domain

Inverse scattering Reconstruction of a. The efficient. Numerical.

Home Page

Title Page
\square

Page 12 of 49

Go Back

Indicator function for boundary

Due to the superposition principle, the scattered field associated with the Herglotz incident field $v_{g}^{i}:=v_{g}(x)$ defined by

$$
\begin{equation*}
v_{g}(x):=\int_{\mathbb{S}} e^{i \kappa x \cdot d} g(d) d s(d), \quad x \in \mathbb{R}^{2} \tag{2}
\end{equation*}
$$

with $g \in L^{2}(\mathbb{S})$ is given by

$$
\begin{equation*}
v_{g}^{s}(x):=\int_{\mathbb{S}} u^{s}(x, d) g(d) d s(d), \quad x \in \mathbb{R}^{2} \backslash \bar{D} \tag{3}
\end{equation*}
$$

and its far field is

$$
\begin{equation*}
v_{g}^{\infty}(\hat{x}):=\int_{\mathbb{S}} u^{\infty}(\hat{x}, d) g(d) d s(d), \quad \hat{x} \in \mathbb{S} \tag{4}
\end{equation*}
$$

Indicator function for boundary

In this case, the Herglotz wave operator \mathbb{H} from $L^{2}(\mathbb{S})$ to $L^{2}\left(\partial D_{a}^{p}\right)$ defined by

$$
\begin{equation*}
\mathbb{H}[g](x):=v_{g}(x)=\int_{\mathbb{S}} e^{i \kappa x \cdot d} g(d) d s(d) \tag{5}
\end{equation*}
$$

is injective, compact with dense range.
Consider the sequence of point sources: pole $\Phi\left(\cdot, z_{p}\right)$, dipoles $\frac{\partial}{\partial x_{j}} \Phi\left(\cdot, z_{p}\right)$ and multipoles of order two $\frac{\partial}{\partial x_{j}} \frac{\partial}{\partial x_{2}} \Phi\left(\cdot, z_{p}\right)$ for $j=1,2$, where

$$
\Phi(x, y)= \begin{cases}\frac{i}{4} H_{0}^{(1)}(k|x-y|), & m=2 \\ \frac{e^{i k|x-y|}}{4 \pi|x-y|}, & m=3,\end{cases}
$$

is the fundamental solution.

Indicator function for boundary

For every p fixed, construct three density sequences $\left\{g_{n}^{p}\right\},\left\{f_{m}^{j, p}\right\}$ and $\left\{h_{k}^{j, p}\right\}$ in $L^{2}(\mathbb{S})$ with $j=1,2$, by the Tikhonov regularization such that

$$
\begin{align*}
& \left\|v_{g_{n}^{p}}-\Phi\left(\cdot, z_{p}\right)\right\|_{L^{2}\left(\partial D_{a}^{p}\right)} \rightarrow 0, \quad n \rightarrow \infty \tag{6}\\
& \left\|v_{f_{m}^{j, p}}-\frac{\partial}{\partial x_{j}} \Phi\left(\cdot, z_{p}\right)\right\|_{L^{2}\left(\partial D_{a}^{p}\right)} \rightarrow 0, \quad m \rightarrow \infty, \\
& \left\|v_{h_{k}^{j, p}}-\frac{\partial}{\partial x_{j}} \frac{\partial}{\partial x_{2}} \Phi\left(\cdot, z_{p}\right)\right\|_{L^{2}\left(\partial D_{a}^{p}\right)} \rightarrow 0, \quad k \rightarrow \infty
\end{align*}
$$

Then use these density functions to construct the indicators:

Indicator function for boundary

$$
\begin{align*}
& I^{0}\left(z_{z}\right):=\frac{1}{\gamma_{2}} \lim _{n \rightarrow \infty} \lim _{n \rightarrow \infty} \int_{\mathrm{s}} \int_{\mathrm{s}} \int_{\mathrm{s}}{ }^{\infty}(-\hat{x}, d) g_{m}^{p}(d) g_{n}^{p}(\hat{x}) d s(\hat{\hat{x}}) d s(d), \tag{9}\\
& I_{j}^{1}\left(z_{0}\right):=\frac{1}{\gamma_{2}} \lim _{n \rightarrow \infty} \lim _{n \rightarrow \infty} \int_{\mathrm{s}} \int_{s^{\infty}} u^{\infty}(-\hat{x}, d) f_{j m}^{i p}(d) g_{n}^{p}(\hat{x}) d s(\hat{x}) d s(d), \tag{10}\\
& I_{s}^{2}\left(z_{p}\right):=\frac{1}{\gamma_{2}} \lim _{n \rightarrow \infty} \lim _{n \rightarrow \infty} \int_{\mathrm{s}} \int_{\mathrm{s}^{\infty}} u^{\infty}(-\hat{x}, d) h_{m}^{i p}(d) g_{n}^{p}(\hat{x}) d s(\hat{x}) d s(d), \tag{11}
\end{align*}
$$

where $\gamma_{2}=e^{i \pi / 4} / \sqrt{8 \pi \kappa}$.
These three indicators are computable from the farfield data, and have different blowup property as $z_{p} \rightarrow a \in \partial D$ which make us detect the obstacle.
(Curvature $\mathcal{C}(a), \sigma^{i}(a)$ and $\sigma^{r}(a)$ will enter the asymptotic behavior explicitly in our higher-order expansion of indicators!)

Inverse scattering Reconstruction of a The efficient. Numerical.

Indicator function for boundary

Higher-order asymptotic for indicators:

I. For pole $\Phi(x, z)$ as source, it follows that

$$
\begin{gather*}
\Re I^{0}\left(z_{p}\right)= \begin{cases}-\frac{1}{4 \pi} \ln \left|\left(z_{p}-a\right) \cdot \nu(a)\right|+O(1), & a \in \partial D_{I}, \\
+\frac{1}{4 \pi} \ln \left|\left(z_{p}-a\right) \cdot \nu(a)\right|+O(1), & a \in \partial D_{D} \\
\Im I^{0}\left(z_{p}\right)=O(1), \quad a \in \partial D .\end{cases} \tag{12}
\end{gather*}
$$

II. Using dipoles $\frac{\partial}{\partial x_{j}} \Phi(x, z)$ with $j=1,2$ as sources, it follows that

$$
\begin{align*}
& \Re I_{j}^{1}\left(z_{p}\right)=\left\{\begin{array}{l}
\frac{-\nu_{j}(a)}{4 \pi\left|\left(z_{p}-a\right) \cdot \nu(a)\right|}-\frac{\nu_{j}(a)\left(\kappa \sigma^{i}(a)+\frac{1}{2} \mathcal{C}(a)\right)}{\pi} \ln \left|\left(z_{p}-a\right) \cdot \nu(a)\right|+O(1), a \in \partial D_{I}, \\
\frac{\nu_{j}(a)}{4 \pi\left|\left(z_{p}-a\right) \cdot \nu(a)\right|}-\frac{\nu_{j}(a)}{2 \pi} \mathcal{C}(a) \ln \left|\left(z_{p}-a\right) \cdot \nu(a)\right|+O(1), a \in \partial D_{D} .
\end{array}\right. \tag{14}\\
& \Im I_{j}^{1}\left(z_{p}\right)=\left\{\begin{array}{l}
-\frac{\nu_{j}(a) \kappa \sigma^{r}(a)}{\pi} \ln \left|\left(z_{p}-a\right) \cdot \nu(a)\right|+O(1), \quad a \in \partial D_{I}, \\
O(1), \quad a \in \partial D_{D} .
\end{array}\right. \tag{15}
\end{align*}
$$

Indicator function for boundary

Higher-order asymptotic for indicators:

III. Using multipoles of order two $\frac{\partial}{\partial x_{j}} \frac{\partial}{\partial x_{2}} \Phi(x, z)$ with $j=1,2$, it follows that

$$
\begin{align*}
& \Re I_{1}^{2}\left(z_{p}\right)=\left\{\begin{array}{l}
\frac{\nu_{1}(a) \nu_{2}(a)}{4 \pi\left|\left(z_{p}-a\right) \cdot \nu(a)\right|^{2}}-\frac{\nu_{1}(a) \nu_{2}(a)}{\pi}\left[\kappa \sigma^{i}(a)+\frac{3}{4} \mathcal{C}(a)\right]_{\left|\left(z_{p}-a\right) \cdot \nu(a)\right|}+ \\
O\left(\ln \left|\left(z_{p}-a\right) \cdot \nu(a)\right|\right), \quad a \in \partial D_{I}, \\
\frac{-\nu_{1}(a) \nu_{2}(a)}{4 \pi \mid\left(z_{p}-\left.a \cdot \cdot \nu(a)\right|^{2}\right.}-\frac{3 \nu(a)_{1} \nu_{2}(a)}{4 \pi} \mathcal{C}(a) \frac{1}{\left|\left(z_{p}-a\right) \cdot \nu(a)\right|}+ \\
O\left(\ln \left|\left(z_{p}-a\right) \cdot \nu(a)\right|\right), \quad a \in \partial D_{D} .
\end{array}\right. \tag{16}\\
& \Re I_{2}^{2}\left(z_{p}\right)=\left\{\begin{array}{l}
\frac{\nu_{2}^{2}(a)-\nu_{1}^{2}(a)}{8 \pi\left|\left(z_{p}-a\right) \cdot \nu(a)\right|^{2}}-\frac{\nu_{2}^{2}(a)-\nu_{1}^{2}(a)}{2 \pi}\left[\kappa \sigma^{i}(a)+\frac{3}{4} \mathcal{C}(a)\right] \frac{1}{\left|\left(z_{p}-a\right) \cdot \nu(a)\right|}+ \\
O\left(\ln \left|\left(z_{p}-a\right) \cdot \nu(a)\right|\right), \quad a \in \partial D_{I}, \\
\frac{\nu_{1}^{2}(a)-\nu_{2}^{2} \cdot(a)}{8 \pi\left|\left(z_{p}-a\right) \cdot \nu(a)\right|^{2}}-\frac{3\left(\nu_{2}^{2}(a)-\nu_{1}^{2}(a)\right)}{8 \pi} \mathcal{C}(a)_{\left|\left(z_{p}-a\right) \cdot \nu(a)\right|}+ \\
O\left(\ln \left|\left(z_{p}-a\right) \cdot \nu(a)\right|\right), \quad a \in \partial D_{D} .
\end{array}\right. \tag{17}
\end{align*}
$$

and

$$
\begin{align*}
& \Im I_{1}^{2}\left(z_{p}\right)= \begin{cases}\frac{\nu_{1}(a) \nu_{2}(a)}{\left.\pi \mid z_{p}-a\right) \cdot \nu(a)} \kappa \sigma^{r}+O\left(\ln \left|\left(z_{p}-a\right) \cdot \nu(a)\right|\right), & a \in \partial D_{I}, \\
O\left(\ln \left|\left(z_{p}-a\right) \cdot \nu(a)\right|\right), & a \in \partial D_{D} .\end{cases} \tag{18}\\
& \Im I_{2}^{2}\left(z_{p}\right)= \begin{cases}\frac{\nu_{2}^{2}(a)-\nu_{1}^{2}(a)}{2 \pi\left|\left(z_{p}-a\right) \cdot \nu(a)\right|} \kappa \sigma^{r}+O\left(\ln \left|\left(z_{p}-a\right) \cdot \nu(a)\right|\right), & a \in \partial D_{I}, \\
O\left(\ln \left|\left(z_{p}-a\right) \cdot \nu(a)\right|\right), & a \in \partial D_{D} .\end{cases} \tag{19}
\end{align*}
$$

Practical indicators:

Using these three indicators in a different but equivalent way, we can identify the boundary property:

Case 1. The geometric shape including the surface impedance is unknown. We can use the formula

$$
\lim _{z_{p} \rightarrow a} \Re I^{0}\left(z_{p}\right)= \begin{cases}+\infty, & a \in \partial D_{I} \tag{20}\\ -\infty, & a \in \partial D_{D}\end{cases}
$$

Practical indicators:

$$
\begin{align*}
& \lim _{z_{p} \rightarrow a} \sum_{j=1}^{2}\left(\Im I_{j}^{1}\right)^{2}=\left\{\begin{array}{l}
\frac{\left(\kappa \sigma^{r}\right)^{2}}{\pi^{2}} \lim _{z_{p} \rightarrow a} \ln ^{2}\left|\left(z_{p}-a\right) \cdot \nu(a)\right|+ \\
\left.O\left(\ln | | z_{p}-a\right) \cdot \nu(a) \mid\right)=+\infty, a \in \partial D_{I}, \\
O(1), a \in \partial D_{D}
\end{array}\right. \tag{22}
\end{align*}
$$

to detect the boundary shape.
(20) and (22) can also be used to identify the boundary type.

Our numerical performance show:
(21) is suitable for reconstructing the boundary shape, while (20) is suitable for identifying the boundary type.

Practical indicators:

Detection of normal direction of ∂D :
Noticing the numerical error reconstructing ∂D, we can use the formula

$$
\begin{equation*}
\nu(a)=\left(\pm t \sqrt{\frac{1}{1+t^{2}}}, \pm \sqrt{\frac{1}{1+t^{2}}}\right) \text { where } t:=\lim _{z_{p} \rightarrow a} \frac{\Re I_{1}^{1}\left(z_{p}\right)}{\Re I_{2}^{1}\left(z_{p}\right)}=\frac{\nu_{1}(a)}{\nu_{2}(a)} \tag{23}
\end{equation*}
$$

from the dipole sources to detect the normal direction, the sign \pm can be fixed by the orientation of ∂D and the rough reconstruction of ∂D.
This information can be used to improve the reconstruction of ∂D.

Practical indicators:

Detection of $\mathcal{C}(a)$ and $\sigma^{i}(a)$ in D_{I} :

Using the multipoles formulas, the curvature and σ^{i} can be computed from the known (or already computed) normal direction of ∂D. If the point a is on ∂D_{I}, then we start to compute the two quantities

$$
\begin{align*}
& \frac{3}{4} \mathcal{C}(a)+\kappa \sigma^{i}(a)=-2 \lim _{z_{p} \rightarrow a}\left[\frac{\pi\left(\left(2 \nu_{1}(a) \nu_{2}(a) \Re I_{1}^{2}\left(z_{p}\right)+\left(\nu_{2}^{2}(a)-\nu_{1}^{2}(a)\right)\right) \Re I_{2}^{2}\left(z_{p}\right)\right)}{\left|\left(z_{p}-a\right) \cdot \nu(a)\right|^{-1}}\right. \\
&\left.-\frac{1}{8\left|\left(z_{p}-a\right) \cdot \nu(a)\right|}\right] \tag{24}\\
& \frac{1}{2} \mathcal{C}(a)+\kappa \sigma^{i}(a)=-\lim _{z_{p} \rightarrow a} \frac{\pi \sum_{j=1}^{2} \nu_{j}(a) \Re I_{j}^{1}\left(z_{p}\right)+\frac{1}{4\left|\left(z_{p}-a\right) \cdot \nu(a)\right|}}{\ln \left|\left(z_{p}-a\right) \cdot \nu(a)\right|} \tag{25}
\end{align*}
$$

from which we deduce the values of $\mathcal{C}(a)$ and $\sigma^{i}(a)$.

Practical indicators:

Detection of $\mathcal{C}(a)$ in ∂D_{D} :
If a is on ∂D_{D}, then we have either

$$
\begin{gathered}
\mathcal{C}(a)=-\frac{8}{3} \lim _{z_{p} \rightarrow a}\left[\frac{\pi\left(2 \nu_{1}(a) \nu_{2}(a) \Re I_{1}^{2}\left(z_{p}\right)+\left(\nu_{2}^{2}(a)-\nu_{1}^{2}(a)\right) \Re I_{2}^{2}\left(z_{p}\right)\right)}{\left|\left(z_{p}-a\right) \cdot \nu(a)\right|^{-1}}+\right. \\
\left.\frac{1}{8\left|\left(z_{p}-a\right) \cdot \nu(a)\right|}\right]
\end{gathered}
$$

using multipoles of order two as sources or
$\mathcal{C}(a)=-2 \lim _{z_{p} \rightarrow a} \frac{\pi \sum_{j=1}^{2} \nu_{j}(a) \Re I_{j}^{1}\left(z_{p}\right)-\frac{1}{4\left|\left(z_{p}-a\right) \cdot \nu(a)\right|}}{\ln \left|\left(z_{p}-a\right) \cdot \nu(a)\right|}$

Practical indicators:

Detection of $\sigma^{r}(a)$ in ∂D_{I} :

$$
\begin{equation*}
\sigma^{r}(a)=-\lim _{z_{p} \rightarrow a} \frac{\pi \sum_{j=1}^{2} \nu_{j}(a) \Im I_{j}^{1}\left(z_{p}\right)}{\kappa \ln \left|\left(z_{p}-a\right) \cdot \nu(a)\right|}, \quad a \in D_{I} . \tag{26}
\end{equation*}
$$

or

$$
\frac{2 \pi}{\kappa} \lim _{z_{p} \rightarrow a} \frac{2 \nu_{1}(a) \nu_{2}(a) \Im I_{1}^{2}\left(z_{p}\right)+\left(\nu_{2}^{2}(a)-\nu_{1}^{2}(a)\right) \Im I_{2}^{2}\left(z_{p}\right)}{\left|\left(z_{p}-a\right) \cdot \nu(a)\right|^{-1}}=\sigma^{r}(a), a \in \partial D_{I}
$$

From identification to controllability

Observations:
The theoretical expression of indicators with higher order expansion contains the information about curvature and impedance simultaneously.

Numerical applications:
If the geometric shape is known/specified in advance, we can introduce suitable surface impedance distribution in terms of the curvature to adjust the blowup property of indicators.

Practical applications:
We can improve or weaken the boundary shape visibility by introducing surface impedance.

The relations between curvature, $\sigma^{i}(x)$ and visibility

Observe

$$
\begin{align*}
\sum_{j=1}^{2}\left(\Re R_{j}^{1}\right)^{2}= & \frac{1}{16 \pi^{2}\left|\left(z_{p}-a\right) \cdot \nu(a)\right|^{2}}-\frac{\left(\kappa \sigma^{i}+\frac{1}{2} \mathcal{C}(a)\right) \ln \left|\left(z_{p}-a\right) \cdot \nu(a)\right|}{2 \pi^{2}\left|\left(z_{p}-a\right) \cdot \nu(a)\right|}+ \\
& O\left(\frac{1}{4 \pi\left|\left(z_{p}-a\right) \cdot \nu(a)\right|}\right) \tag{27}
\end{align*}
$$

for dipoles and

$$
\begin{align*}
& 2 \nu_{1}(a) \nu_{2}(a) \Re I_{1}^{2}\left(z_{p}\right)+\left(\nu_{2}^{2}(a)-\nu_{1}^{2}(a)\right) \Re I_{2}^{2}\left(z_{p}\right) \\
= & \frac{1}{8 \pi\left|\left(z_{p}-a\right) \cdot \nu(a)\right|^{2}}-\frac{\frac{3}{4} \mathcal{C}(a)+k \sigma^{i}(a)}{\pi\left|\left(z_{p}-a\right) \cdot \nu(a)\right|}+O\left(\ln \left|\left(z_{p}-a\right) \cdot \nu(a)\right|\right) \tag{28}
\end{align*}
$$

for multipoles.

Conclusion:

If we take $\partial D \equiv \partial D_{I}$ and choose $\sigma^{i}(x)$ such that $\left(\kappa \sigma^{i}+\frac{1}{2} \mathcal{C}(a)\right)\left(\right.$ respt. $\left.\frac{3}{4} \mathcal{C}(a)+k \sigma^{i}(a)\right)$ is uniformly distributed, then ∂D is easily detected.

3 The efficient computational algorithm

Main task in recovering ∂D

Recall the indicator:

$$
\begin{align*}
& I^{0}\left(z_{p}\right):=\frac{1}{\gamma_{2}} \lim _{m \rightarrow \infty} \lim _{n \rightarrow \infty} \int_{\mathbb{S}^{1}} \int_{\mathbb{S}^{1}} u^{\infty}(-\hat{x}, d) g_{m}^{p}(d) g_{n}^{p}(\hat{x}) d s(\hat{x}) d s(d), \tag{29}\\
& I_{j}^{1}\left(z_{p}\right):=\frac{1}{\gamma_{2}} \lim _{m \rightarrow \infty} \lim _{n \rightarrow \infty} \int_{\mathbb{S}^{1}} \int_{\mathbb{S}^{1}} u^{\infty}(-\hat{x}, d) f_{m}^{j, p}(d) g_{n}^{p}(\hat{x}) d s(\hat{x}) d s(d), \tag{30}\\
& I_{j}^{2}\left(z_{p}\right):=\frac{1}{\gamma_{2}} \lim _{m \rightarrow \infty} \lim _{n \rightarrow \infty} \int_{\mathbb{S}^{1}} \int_{\mathbb{S}^{1}} u^{\infty}(-\hat{x}, d) h_{m}^{j, p}(d) g_{n}^{p}(\hat{x}) d s(\hat{x}) d s(d), \tag{31}
\end{align*}
$$

and

$$
\begin{gather*}
\left\|v_{g_{n}^{p}}-\Phi\left(\cdot, z_{p}\right)\right\|_{L^{2}\left(\partial D_{a}^{p}\right)} \rightarrow 0, \quad n \rightarrow \infty \tag{32}\\
\left\|v_{f_{m}^{j, p}}-\frac{\partial}{\partial x_{j}} \Phi\left(\cdot, z_{p}\right)\right\|_{L^{2}\left(\partial D_{a}^{p}\right)} \rightarrow 0, \quad m \rightarrow \infty \tag{33}\\
\left\|v_{h_{k}^{j, p}}-\frac{\partial}{\partial x_{j}} \frac{\partial}{\partial x_{2}} \Phi\left(\cdot, z_{p}\right)\right\|_{L^{2}\left(\partial D_{a}^{p}\right)} \rightarrow 0, \quad k \rightarrow \infty \tag{34}
\end{gather*}
$$

where

$$
\begin{equation*}
v_{g}(x):=\mathbb{H}[g](x)=\int_{\mathbb{S}^{1}} e^{i \kappa x \cdot d} g(d) d s(d) \tag{35}
\end{equation*}
$$

Recall the approximation domain

Inverse scattering. Reconstruction of a The efficient. Numerical.

Home Page

Title Page
\square

Page 28 of 49

Go Back

Compute the three density functions

To reconstruct ∂D, we should compute $g_{m}^{p}(d), f_{m}^{j, p}(d), h_{m}^{j, p}(d)$ for $z_{p} \rightarrow a$ with all possible a around ∂D, large amount of computations!

Hope: When a rotates around ∂D, the approximate domain D_{a}^{p} also rotates!

Solution:

- Generate D_{a}^{p} from some fixed domain D_{0};
- Approximate the singular sources in ∂D_{0} using the minimum norm solution $g_{0}(d), f^{j, 0}(d), h^{j, 0}(d)$ for $0 \notin D_{0}$.
- Generate $g_{m}^{p}(d), f_{m}^{j, p}(d), h_{m}^{j, p}(d)$ for $z_{p} \rightarrow a$ from $g_{0}(d), f^{j, 0}(d), h^{j, 0}(d)$ by some simple ways and guarantee the approximate relations!

Compute the three density functions

Known work by Potthast in 2000:
For reference domain G_{0} with $0 \notin G_{0}$, let

$$
G:=\mathbb{M} G_{0}+z_{0}
$$

with an orthogonal unit matrix \mathbb{M} and vector $z_{0}: G$ is generated from G_{0} by rotation and translation! Consider two integral equations of the first kind

$$
\begin{align*}
\mathbb{H}\left[g_{0}\right](x) & =\Phi(x, 0), \quad x \in \partial G_{0}, \tag{36}\\
\mathbb{H}[g](x) & =\Phi\left(x, z_{0}\right), \quad x \in \partial G . \tag{37}
\end{align*}
$$

Result: Assume that $g_{0}(d)$ is the MNS of (36) with discrepancy ε. Then

$$
\begin{equation*}
g(d):=g_{0}\left(\mathbb{M}^{-1} d\right) e^{-i \kappa d \cdot z_{0}} \tag{38}
\end{equation*}
$$

is MNS of (37) with discrepancy $\varepsilon>0$.

Compute the three density functions

Importance:

- Only compute the MNS of (36) once in ∂G_{0};
- $g(d)$ can be computed in a simple way;
- $g(d)$ is also the MNS of (37);
- The approximation in ∂G is also ε.

Our problems: How to approximate dipole

For $\left(\varphi_{1}, \varphi_{2}\right)^{T} \in L^{2}(\mathbb{S}) \times L^{2}(\mathbb{S})$, define

$$
\mathbb{H}\left[\left(\varphi_{1}, \varphi_{2}\right)^{T}\right](x):=\left(\mathbb{H}\left[\varphi_{1}\right](x), \mathbb{H}\left[\varphi_{2}\right](x)\right)^{T} .
$$

For functions $\left(f_{1}, f_{2}\right)^{T} \in L^{2}(\Gamma) \times L^{2}(\Gamma)$, define

$$
\left\|\left(f_{1}, f_{2}\right)^{T}\right\|_{L^{2}(\Gamma \times \Gamma)}^{2}:=\left\|f_{1}\right\|_{L^{2}(\Gamma)}^{2}+\left\|f_{2}\right\|_{L^{2}(\Gamma)}^{2} .
$$

Compute the three density functions
We have the following generalizations:
Result 1: Assume that $f_{0}^{j}(d)$ with $j=1,2$ are MNS of

$$
\mathbb{H}\left[f_{0}^{j}\right](x)=\Phi_{x_{j}}(x, 0), \quad x \in \partial G_{0}
$$

with discrepancy $\varepsilon>0$. Then $\left(f^{1}, f^{2}\right)^{T}$ given by

$$
\binom{f^{1}(d)}{f^{2}(d)}:=\mathbb{M}\binom{f_{0}^{1}\left(\mathbb{M}^{-1} d\right)}{f_{0}^{2}\left(\mathbb{M}^{-1} d\right)} e^{-i \kappa d \cdot z_{0}}
$$

satisfies that

Compute the three density functions

Result 2: Assume that $h_{0}^{j}(d)$ with $j=1,2$ are MNS of

$$
\begin{equation*}
\mathbb{H}\left[h_{0}^{j}\right](x)=\Phi_{x_{j} x_{2}}(x, 0), \quad x \in \partial G_{0} \tag{42}
\end{equation*}
$$

with discrepancy $\varepsilon>0$. Then $\left(h^{1}, h^{2}\right)^{T}$ given by
satisfies that

Compute the three density functions

Using this result, we can approximate the singular sources by Herglotz wave functions in all approximate domains $\partial D_{a}^{p}:=\mathbb{M}(a) D_{0}+z_{p}$ with a few amount of computations.

- $\mathbb{M}(a)$: approaching direction and z_{p} : approaching step along this direction.
- Choose different $\mathbb{M}(a)$ and z_{p} from $D_{0}, z_{p} \notin D_{a}^{p}$ can approach to any points $a \in \partial D$.
- We compute MNS φ_{0} in ∂D_{0}, the density functions for approaching singular source in ∂D_{a}^{p} can be computed from φ_{0} by a simple function transformation.

Reconstruction of a The efficient. Numerical.

Configuration of G_{0} with some cone shape boundary and its transform

Inverse scattering .

Reconstruction of a
The efficient
Numerical.

Home Page

Title Page

Page 35 of 49

Go Back

Full Screen

Special Difficulty

The essences of approximating $\Phi\left(x, z_{0}\right)$ (respt. $\left.\Phi_{x_{j}}\left(x, z_{0}\right), \Phi_{x_{1} x_{j}}\left(x, z_{0}\right)\right)$ by Herglotz wave function

$$
\mathbb{H}[g]:=\int_{\mathbb{S}^{1}} e^{i \kappa x \cdot d} g_{z_{0}}(d) d s(d)
$$

in ∂G for z_{0} near to ∂G is: Approximate a almost singular function by a smooth function.

Notice: Real part of Φ is almost singular, while its imaginary part is smooth.

Difficulty:

- Integral equation of the first kind;
- The right-hand side is almost singular;

Inverse scattering . Reconstruction of a The efficient. Numerical.

- Efficient solution algorithm.

Approximation behavior:

Reonstruction of Reconstruction of a The efficient. Numerical.

4 Numerical implementations

Model problem
We focus on the effect of surface impedance and the obstacle curvature, by using (21) to detect the boundary, explaining the effect of surface impedance.
Example 1. Take $\kappa=1,2$ and D being a cycle

$$
\partial D:=\{x=1.5 \times(\cos t, \sin t), t \in[0,2 \pi]\} .
$$

Case 1: The surface impedance is a real constant, ∂D has a mixed boundary

Reantruction of The efficient
$\partial D_{D}=\{x \in \partial D: t \in[0, \pi)\}, \quad \partial D_{I}=\{x \in \partial D$
The results for $\sigma(x)=30, \sigma(x)=3$ using the same criterion in all directions are shown below.

Numerics:

Recovery of ∂D for mixed boundary condition with $\sigma(x)=30$ (left) and $\sigma(x)=3$ (right).
For small $\sigma(x)$ (right), the blowing-up behavior for the impedance boundary is weak. Using the same criterion in all directions, the impedance part can not be detected (just initial guess).

Numerics:

Case 2: The surface impedance case. We assume $\partial D=\partial D_{I}$ and consider three cases:
$\sigma(x)=5-5 i, \sigma(x)=5-\frac{0.6667}{2 \kappa} i, \sigma(x)=5-5 \sin \left(6 x_{1} x_{2}\right)$
The second case meets $\frac{1}{2} \mathcal{C}(a)+\kappa \sigma^{i}(a) \equiv 0$ in ∂D_{I}.
Using different uniform blowing-up values, the reconstructions are given below for the first two configurations. We see that the whole obstacle can be seen for both cases. However, the reconstruction is better in the picture of the left hand side.

This is natural and it can be explained using (27).

Numerics:

Reconstruction in the first two-cases.

Reconstruction of ∂D for surface impedance in ∂D with $\sigma(x)=5-5 i$ (left) and $\sigma(x)=5-\frac{0.6667}{2 \times 1.2} i$ (right), using the uniform blowing-up criteria in all directions. For large blowing-up values, the boundary can not be seen (right).

Numerics:

Case 2: The surface impedance case.
In the third configuration, the imaginary part of impedance has serious oscillation.

It can be seen that the oscillation of $\sigma^{i}(x)$ on ∂D makes the reconstruction of the obstacle less accurate. In addition, for large blowing-up values of $C B$, we cannot recognize at all the very well uniform shape of a circle. It is worth noticing that this phenomenon should be the same using any of the indicator functions $I^{0}, I_{j}^{i}, i, j=1,2$ or even using of indicators based on multipoles of higher orders. Reconstruction of a The efficient. Numerical.

Numerics:

Reconstruction in the third configuration.

Reconstruction of ∂D for surface impedance with oscillatory imaginary part(left), and the function $\Im \sigma(x)$ (right). The formula (21) can be used to explain this reconstruction. That is, the oscillation of $\sigma^{i}(x)$ in ∂D_{I} decreases the visibility of obstacle.

Numerics:

Example 3. Consider a complex obstacle $\partial D=\{x: x(t)=(\cos t+0.65 \cos 2 t-0.65,1.5 \sin t), t \in[0, \mathcal{R}]\}$,

A kite-shaped obstacle (left) and its curvature distribution with respect to the polar angle (right). The curvature takes maximum value near points A, B, which means a strong scattering in this part.

Inverse scattering

Numerics:

Case 1. Consider the constant surface impedance for $\sigma(x)=5, \sigma(x)=5-5 i$.

For real surface impedance, the part of the boundary with the maximum curvature is relatively easy

Inverse scattering Reconstruction of a The efficient Numerical.

Numerics:

Case 2. Curvature effect.
Take $\sigma(x)=5+\sigma^{i}(x) i$. The reconstructions with $\sigma^{i}(x)$ satisfying $\frac{1}{2} \mathcal{C}(x)+\kappa \sigma^{i}(x) \equiv-5$ (left) and $\frac{1}{2} \mathcal{C}(x)+\kappa \sigma^{i}(x) \equiv-10$ (right) in ∂D are shown below.

Inverse scattering Reconstruction of a The efficient. Numerical.

Observations:

The variable imaginary part of impedance in terms of the curvature removes the nonuniform blowingup due to the curvature distribution.

Explanation:

- The uniform blowing-up property is obtained, except on the parts near the point E, where the curvature takes the negative minimum value.
- This phenomena is physically reasonable. There are multiple reflections of the scattered wave. So the information about this concave side is relatively small in the far-field data.
- To explain more about this phenomenon, a higher asymptotic expansion using higher multipole sources is needed.

Some open problems:

- Efficient realization of singular sources approximation;
- Numerically reconstruction of boundary impedance by asymptotic expression;
- Physical explanation on $\Im \sigma(x) \neq 0$?
- Convergence order analysis for noisy data $u_{\delta}^{\infty}(\hat{x}, d)$?
-3-dimensional obstacle case?
- Potential applications?

Home Page
nverse scattering
Reconstruction of a
The efficient.
Numerical.

Title Page

Go Back

Full Screen

Thanks a lot !

