Qualitative Results in Inverse Scattering and Impedance Tomography

Andreas Kirsch (Karlsruhe)
Martin Hanke-Bourgeois (Mainz)
Helsinki, March 2010

Fakultät für Mathematik

Overview

- Example of a problem in impedance tomography
- Example of an inverse scattering problem
- Questions of uniqueness and stability
- Characterizations of shape
- Transmission eigenvalues
- Asymptotics
- Stochastic models

Example (A)

Impedance Tomography
$B \subset \mathbb{R}^{2}$ bounded domain with smooth ∂B and $\sigma \in L^{\infty}(B)$ of the form

$$
\sigma=\left\{\begin{array}{cl}
\sigma_{0} & \text { in } B \backslash D, \\
\sigma_{0}+q & \text { in } D,
\end{array} \quad \text { where } \bar{D} \subset B\right.
$$

Direct Problem: Given $\sigma \in L^{\infty}(B)$ and $f \in H_{\diamond}^{-1 / 2}(\partial B)$, determine $u \in H^{1}(B)$ with

$$
\operatorname{div}(\sigma \nabla u)=0 \text { in } B, \quad \sigma \frac{\partial u}{\partial \nu}=f \text { on } \partial B
$$

Inverse Problem: Given Neumann-Dirichlet map
$\Lambda: H_{\diamond}^{-1 / 2}(\partial B) \rightarrow H_{\diamond}^{+1 / 2}(\partial B),\left.f \mapsto u\right|_{\partial B}$, determine σ or at least
$D=\operatorname{supp}(q)!$

Example (B)

Scattering Problem for time-harmonic acoustic waves:
Contrast $q \in L^{\infty}\left(\mathbb{R}^{d}\right)$ (where $d=2,3$) with $q=0$ outside of bounded domain $D \subset \mathbb{R}^{d}$, incident field $u^{i}(x)=\exp (i k x \cdot \hat{\theta})$ with wave number $k=\omega / c>0$ and direction $\hat{\theta} \in S^{d-1}$ (unit sphere).
Direct Problem: Given q and u^{i}, determine $u \in H_{l o c}^{1}\left(\mathbb{R}^{d}\right)$ with

$$
\Delta u+k^{2}(1+q) u=0 \text { in } \mathbb{R}^{d}, \quad u=u^{i}+u^{s},
$$

and u^{s} satisfies a radiation condition.
rad. cond. implies: $\quad u^{s}(x)=\frac{\exp (i k|x|)}{|x|^{(d-1) / 2}}\left[u^{\infty}(\hat{x}, \hat{\theta}, k)+\frac{1}{|x|}\right]$
Inverse Problem: Given $u^{\infty}(\hat{x}, \hat{\theta}, k)$ for many (all?) $\hat{x}, \hat{\theta} \in S^{d-1}$, $k>0$, determine q or at least $D=\operatorname{supp}(q)$!

Remarks:

Variations wrt

- boundary conditions on ∂D (impenetrable inclusions/scatterers): $u=0$ or $\partial u / \partial \nu=0$ or $\partial u / \partial \nu+\lambda u=0$ on ∂D
- models, e.g.: diffuse tomography, optical tomography, elastic wave propagation (Navier's equations), electromagnetic wave propagation (Maxwell's equations), coupled equations
- geometries: layered media, gratings, wave guides, cracks

Uniqueness, Stability

- Uniqueness for 3D inverse scattering problem: Nachman, Novikov, Ramm 1988, 2D - case just settled.
- Inverse scattering by Dirichlet or Neumann boundary conditions: Uniqueness for one wave number and one (or dimension d, resp.) incident wave for polygonal regions: Elschner, Yamamoto, H. Liu et al since 2003, general case open.
- Uniqueness for 2D impedance tomography answered by Astala, Päivärinta et al since 2006, 3D - case is open.
- Backscattering (next slide)
- Stability EIT: Alessandrini, di Cristo et al since 1988
- Stability inverse scattering Problem: Isakov since 1992, Hohage, Potthast since 2000

Backscattering

Example electrostatic backscattering: Given an insulating $D \subset \mathbb{R}^{3}$, determine $u_{x}=\Phi(\cdot, x)+U_{x}$ (where Φ fundamental sol., U_{x} smooth, $x \in \mathcal{M})$ s.t.

$$
\Delta u_{x}=\delta_{x} \text { in } \mathbb{R}^{3} \backslash \bar{D}, \quad \frac{\partial u_{x}}{\partial \nu}=0 \text { on } \partial D .
$$

Note: u_{x} is the Neumann function for the exterior of D
Then define "backscattered data" as $b=b(x)=U_{x}(x)$ for $x \in \mathcal{M}$

setup

backscattered data

Open problem: Can one reconst. D from backscattered data? Preliminary results exist for 2D data within bounded domains.

Characterizations

- Sampling methods, e.g.:

Linear Sampling Method: Colton, Kirsch et al since 1996, Singular Sources Method: Potthast et al since 1996, Probe Method: Ikehata since 1998,
Factorization Method: Kirsch, Hanke, Hyvönen et al since 1998

- Source supports:

Scattering support: Kusiak, Sylvester since 2003, Electrostatics: Hanke, Hyvönen et al 2008

- Transmission eigenvalues (appear with far field operator): Colton, Monk, Kirsch, Päivärinta et al since 1988

Example: Factorization Method

Data for impedance tomography problem: $\Lambda-\Lambda_{0}$ where
$\Lambda=$ D-N-operator with defect,

$$
H_{\diamond}^{-\frac{1}{2}}(\partial B) \xrightarrow{\Lambda-\Lambda_{0}} H_{\diamond}^{+\frac{1}{2}}(\partial B)
$$

$\Lambda_{0}=$ D-N-operator without defect

$$
\sigma=\sigma_{0}+\chi_{D} q
$$

Factorization:

$$
\Lambda-\Lambda_{0}=A^{*} T A
$$

$$
L^{2}(D) \xrightarrow{T} L^{2}(D)
$$

where $A: H_{\diamond}^{-1 / 2}(\partial B) \rightarrow L^{2}(D)$ compact and $T: L^{2}(D) \rightarrow L^{2}(D)$ isomorphism. Then with $\phi_{z}(x)=d \cdot(x-z) /|x-z|^{2}, x \in \partial B$, (if B disc, $\sigma_{0}=1, d$ fixed vector, and further assumptions):

- $\phi_{z} \in \mathcal{R}\left(A^{*}\right) \Longleftrightarrow z \in D$
- $\left.\mathcal{R}\left(A^{*}\right)=\mathcal{R}\left(\left|\Lambda-\Lambda_{0}\right|^{1 / 2}\right)\right\}$

$$
z \in D \Longleftrightarrow \phi_{z} \in \mathcal{R}\left(\left|\Lambda-\Lambda_{0}\right|^{1 / 2}\right)
$$

Example: Scattering Support

Recall: Let $f \in L^{2}\left(\mathbb{R}^{3}\right)$ (or distribution) of compact support and u radiating solution of $\Delta u+k^{2} u=f$ in \mathbb{R}^{3}.

Then:

$$
u(x)=\frac{\exp (i k|x|)}{|x|} u_{f}^{\infty}(\hat{x})+\mathcal{O}\left(\frac{1}{|x|^{2}}\right),|x| \rightarrow \infty
$$

Definition: Let $\alpha=u_{f}^{\infty}$ for some $f \in L^{2}(D)$ with compact support. c- $\operatorname{supp}(\alpha)=\bigcap_{M \in \mathcal{M}_{\alpha}} M$ is called convex scattering support of α where

$$
\mathcal{M}_{\alpha}=\left\{\begin{array}{ll}
M \subset \mathbb{R}^{3}: & M \text { convex and compact with } \\
& u_{g}^{\infty}=\alpha \text { for some } g \in L^{2}\left(\mathbb{R}^{3}\right) \text { with } \\
\text { support in } M
\end{array}\right\}
$$

Goal: Determine \mathcal{M}_{α} from α !

Example: Transmission Eigenvalue Probl.

Definition: $k>0$ is called interior transmission eigenvalue if there exist nontrivial $u, w \in L^{2}(D)$ with $u-w \in H^{2}(D)$ such that

$$
\begin{aligned}
\Delta u+k^{2}(1+q) u= & 0 \text { in } D \\
\Delta w+k^{2} w= & 0 \text { in } D \\
u=w \text { on } \partial D, & \frac{\partial u}{\partial \nu}=\frac{\partial w}{\partial \nu} \text { on } \partial D .
\end{aligned}
$$

Discreteness: Colton, Kirsch, Päivärinta since 1989
Existence: Päivärinta, Sylvester 2008, Cakoni (infinite number of eigenvalues and general q 2009)
Open problem: Existence of complex eigenvalues!
Ultimate goal: Determine properties of q from eigenvalues/eigenfunctions

Asymptotics

- Small inclusions (Ammari/Kang 2004, Hanke, Griesmaier, Vogelius, et al)

$$
\left(\Lambda_{\varepsilon}-\Lambda_{0}\right) f=-\varepsilon^{2} \nabla_{y} N(\cdot, z) \cdot M \nabla u_{0}(z)+\mathcal{O}\left(\varepsilon^{3}\right)
$$

- Small wave numbers (Justification of Factorization Method for point source incidence): Hanke, Gebauer 2008
- Topological derivative (Sokolowski, Masmoudi et al):

$$
\begin{gathered}
\operatorname{div}\left(\sigma \nabla u_{\varepsilon}\right)=0 \text { in } B \backslash K_{\varepsilon}(z), \quad \sigma \frac{\partial u_{\varepsilon}}{\partial \nu}=f \text { on } \partial B, \\
\sigma \frac{\partial u_{\varepsilon}}{\partial \nu}=0 \text { on } \partial K_{\varepsilon}(z) . \quad \text { Set } J_{\varepsilon}(z):=\int_{\partial B}\left|u_{\varepsilon}-g\right|^{2} d s .
\end{gathered}
$$

Then compute: $\quad T(z):=\lim _{\varepsilon \rightarrow 0}\left[J_{\varepsilon}(z)-J_{0}(z)\right] /\left(2 \pi \varepsilon^{2}\right)$ and plot the region $\{z \in B: T(z)<0\}$!

Stochastic Models

Example EIT-Direct Problem. Given $\sigma \in L^{\infty}(B), f \in L^{2}(\partial B)$, determine $u \in H^{1}(B)$ with

$$
\operatorname{div}(\sigma \nabla u)=0 \text { in } B, \quad \sigma \frac{\partial u}{\partial \nu}=f \text { on } \partial B .
$$

Probabilistic approach: If σ is of class $\mathcal{C}^{1}, X_{0} \in \bar{B}$, and if

$$
X_{t}=X_{0}+\int_{0}^{t} \nabla \sigma\left(X_{s}\right) \mathrm{d} s+\int_{0}^{t} \sqrt{2 \sigma\left(X_{s}\right)} \mathrm{d} W_{s}-\int_{0}^{t}(\sigma \nu)\left(X_{s}\right) \mathrm{d} L_{s}
$$

then one has $u\left(X_{0}\right)=\lim _{T \rightarrow \infty} \mathbb{E}\left[\int_{0}^{T} f\left(X_{t}\right) \mathrm{d} L_{t}\right]$ (Feynman/Kac)

Stochastic EIT-Problem (cont.)

Open Problem: What about general conductivities?
In general, X is not a semi-martingale. However, the differential operator acts locally, so that in regions, where σ is smooth, X behaves like a "good"diffusion. What happens at the surface of discontinuity?

