

Qualitative Results in Inverse Scattering and Impedance Tomography

Andreas Kirsch (Karlsruhe)

Martin Hanke-Bourgeois (Mainz) | Helsinki, March 2010

Fakultät für Mathematik

KIT - University of the State of Baden-Württemberg and National Large-scale Research Center of the Helmholtz Association

www.kit.edu

- Example of a problem in impedance tomography
- Example of an inverse scattering problem
- Questions of uniqueness and stability
- Characterizations of shape
- Transmission eigenvalues
- Asymptotics
- Stochastic models

Example (A)

Impedance Tomography

 $B \subset \mathbb{R}^2$ bounded domain with smooth ∂B and $\sigma \in L^\infty(B)$ of the form

$$\sigma = \begin{cases} \sigma_0 & \text{in } B \setminus D, \\ \sigma_0 + q & \text{in } D, \end{cases}$$
 where $\overline{D} \subset B$.

Direct Problem: Given $\sigma \in L^{\infty}(B)$ and $f \in H^{-1/2}_{\diamond}(\partial B)$, determine $u \in H^{1}(B)$ with

$$\operatorname{div}(\sigma \nabla u) = 0 \text{ in } B, \quad \sigma \frac{\partial u}{\partial \nu} = f \text{ on } \partial B.$$

Inverse Problem: Given Neumann-Dirichlet map $\Lambda : H_{\diamond}^{-1/2}(\partial B) \to H_{\diamond}^{+1/2}(\partial B), f \mapsto u|_{\partial B}$, determine σ or at least $D = \operatorname{supp}(q)!$

Example (B)

Scattering Problem for time-harmonic acoustic waves:

Contrast $q \in L^{\infty}(\mathbb{R}^d)$ (where d = 2, 3) with q = 0 outside of bounded domain $D \subset \mathbb{R}^d$, incident field $u^i(x) = \exp(ik x \cdot \hat{\theta})$ with wave number $k = \omega/c > 0$ and direction $\hat{\theta} \in S^{d-1}$ (unit sphere).

Direct Problem: Given q and u^i , determine $u \in H^1_{loc}(\mathbb{R}^d)$ with

$$\Delta u + k^2 (1+q)u = 0 \text{ in } \mathbb{R}^d, \quad u = u^i + u^s,$$

and u^s satisfies a radiation condition.

rad. cond. implies:
$$u^{s}(x) = \frac{\exp(ik|x|)}{|x|^{(d-1)/2}} \left[u^{\infty}(\hat{x},\hat{\theta},k) + \frac{1}{|x|} \right]$$

Inverse Problem: Given $u^{\infty}(\hat{x}, \hat{\theta}, k)$ for many (all?) $\hat{x}, \hat{\theta} \in S^{d-1}$, k > 0, determine q or at least D = supp(q)!

Remarks:

Variations wrt

- boundary conditions on ∂D (impenetrable inclusions/scatterers): u = 0 or $\partial u / \partial v = 0$ or $\partial u / \partial v + \lambda u = 0$ on ∂D
- models, e.g.: diffuse tomography, optical tomography, elastic wave propagation (Navier's equations), electromagnetic wave propagation (Maxwell's equations), coupled equations
- geometries: layered media, gratings, wave guides, cracks

Uniqueness, Stability

- Uniqueness for 3D inverse scattering problem: Nachman, Novikov, Ramm 1988, 2D - case just settled.
- Inverse scattering by Dirichlet or Neumann boundary conditions: Uniqueness for one wave number and one (or dimension *d*, resp.) incident wave for polygonal regions: Elschner, Yamamoto, H. Liu et al since 2003, general case open.
- Uniqueness for 2D impedance tomography answered by Astala, Päivärinta et al since 2006, 3D - case is open.
- Backscattering (next slide)
- Stability EIT: Alessandrini, di Cristo et al since 1988
- Stability inverse scattering Problem: Isakov since 1992, Hohage, Potthast since 2000

Backscattering

Example electrostatic backscattering: Given an insulating $D \subset \mathbb{R}^3$, determine $u_x = \Phi(\cdot, x) + U_x$ (where Φ fundamental sol., U_x smooth, $x \in \mathcal{M}$) s.t.

$$\Delta u_{\mathbf{x}} = \delta_{\mathbf{x}} \text{ in } \mathbb{R}^3 \setminus \overline{D}, \quad \frac{\partial u_{\mathbf{x}}}{\partial \nu} = 0 \text{ on } \partial D.$$

Note: u_x is the Neumann function for the exterior of D

Then define "backscattered data" as $b = b(x) = U_x(x)$ for $x \in \mathcal{M}$

setup

backscattered data

Open problem: Can one reconst. *D* from backscattered data? Preliminary results exist for 2D data within bounded domains.

Characterizations

Sampling methods, e.g.:

Linear Sampling Method: Colton, Kirsch et al since 1996, Singular Sources Method: Potthast et al since 1996, Probe Method: Ikehata since 1998, Factorization Method: Kirsch, Hanke, Hyvönen et al since 1998

Source supports:

Scattering support: Kusiak, Sylvester since 2003, Electrostatics: Hanke, Hyvönen et al 2008

Transmission eigenvalues (appear with far field operator): Colton, Monk, Kirsch, Päivärinta et al since 1988

Example: Factorization Method

Data for impedance tomography problem: $\Lambda - \Lambda_0$ where

where $A : H_{\diamond}^{-1/2}(\partial B) \to L^{2}(D)$ compact and $T : L^{2}(D) \to L^{2}(D)$ isomorphism. Then with $\phi_{z}(x) = d \cdot (x - z)/|x - z|^{2}, x \in \partial B$, (if *B* disc, $\sigma_{0} = 1$, *d* fixed vector, and further assumptions): $\phi_{z} \in \mathcal{R}(A^{*}) \iff z \in D$ $\mathcal{R}(A^{*}) = \mathcal{R}(|\Lambda - \Lambda_{0}|^{1/2})$ $z \in D \iff \phi_{z} \in \mathcal{R}(|\Lambda - \Lambda_{0}|^{1/2})$

Example: Scattering Support

Recall: Let $f \in L^2(\mathbb{R}^3)$ (or distribution) of compact support and u radiating solution of $\Delta u + k^2 u = f$ in \mathbb{R}^3 .

Then:
$$u(x) = rac{\exp(ik|x|)}{|x|} u_f^\infty(\hat{x}) + \mathcal{O}\left(rac{1}{|x|^2}\right), \ |x| \to \infty.$$

Definition: Let $\alpha = u_f^{\infty}$ for some $f \in L^2(D)$ with compact support. c-supp $(\alpha) = \bigcap_{M \in \mathcal{M}_{\alpha}} M$ is called convex scattering support of α where

$$\mathcal{M}_{\alpha} = \left\{ \begin{array}{ll} M \subset \mathbb{R}^3 : & M \text{ convex and compact with} \\ & u_g^{\infty} = \alpha \text{ for some } g \in L^2(\mathbb{R}^3) \text{ with} \\ & \text{ support in } M \end{array} \right\}$$

Goal: Determine \mathcal{M}_{α} from α !

Example: Transmission Eigenvalue Probl.

Definition: k > 0 is called interior transmission eigenvalue if there exist nontrivial $u, w \in L^2(D)$ with $u - w \in H^2(D)$ such that

$$\Delta u + k^{2}(1+q)u = 0 \text{ in } D,$$

$$\Delta w + k^{2}w = 0 \text{ in } D,$$

$$u = w \text{ on } \partial D, \qquad \frac{\partial u}{\partial \nu} = \frac{\partial w}{\partial \nu} \text{ on } \partial D.$$

Discreteness: Colton, Kirsch, Päivärinta since 1989 Existence: Päivärinta, Sylvester 2008, Cakoni (infinite number of eigenvalues and general *q* 2009) Open problem: Existence of complex eigenvalues! Ultimate goal: Determine properties of *q* from eigenvalues/eigenfunctions

Asymptotics

 Small inclusions (Ammari/Kang 2004, Hanke, Griesmaier, Vogelius, et al)

$$(\Lambda_{\varepsilon} - \Lambda_{0})f = -\varepsilon^{2} \nabla_{y} N(\cdot, z) \cdot M \nabla u_{0}(z) + \mathcal{O}(\varepsilon^{3})$$

- Small wave numbers (Justification of Factorization Method for point source incidence): Hanke, Gebauer 2008
- Topological derivative (Sokolowski, Masmoudi et al):

$$\operatorname{div}(\sigma \nabla u_{\varepsilon}) = 0 \text{ in } B \setminus \mathcal{K}_{\varepsilon}(z), \quad \sigma \frac{\partial u_{\varepsilon}}{\partial \nu} = f \text{ on } \partial B,$$
$$\sigma \frac{\partial u_{\varepsilon}}{\partial \nu} = 0 \text{ on } \partial \mathcal{K}_{\varepsilon}(z). \quad \operatorname{Set} J_{\varepsilon}(z) := \int_{\partial B} |u_{\varepsilon} - g|^2 ds.$$

0

Then compute: $T(z) := \lim_{\varepsilon \to 0} [J_{\varepsilon}(z) - J_{0}(z)]/(2\pi\varepsilon^{2})$ and plot the region $\{z \in B : T(z) < 0\}!$

Stochastic Models

Example EIT-Direct Problem. Given $\sigma \in L^{\infty}(B)$, $f \in L^{2}(\partial B)$, determine $u \in H^{1}(B)$ with

$$\operatorname{div}(\sigma \nabla u) = 0 \text{ in } B, \quad \sigma \frac{\partial u}{\partial \nu} = f \text{ on } \partial B.$$

Probabilistic approach: If σ is of class C^1 , $X_0 \in \overline{B}$, and if

$$X_t = X_0 + \int_0^t \nabla \sigma(X_s) \mathrm{d}s + \int_0^t \sqrt{2\sigma(X_s)} \mathrm{d}W_s - \int_0^t (\sigma \nu)(X_s) \mathrm{d}L_s$$

then one has $u(X_0) = \lim_{T \to \infty} \mathbb{E} \left[\int_0^T f(X_t) dL_t \right]$ (Feynman/Kac)

Open Problem: What about general conductivities?

In general, X is not a semi-martingale. However, the differential operator acts locally, so that in regions, where σ is smooth, X behaves like a "good" diffusion. What happens at the surface of discontinuity?