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1 Introduction
Let xt and ht measurable functions R+ 7→ R, where xt has finite variation and
ht is bounded on every compact interval.

A function of finite variation has a representation

xt = x0 + x⊕t − x	t ,

where x⊕t , x
	
t are non-decreasing functions with x⊕0 = x	0 = 0. We can always

choose a representation where the corresponding measures x⊕(dt), x	(dt) are
mutually singular. Then, the variation of the function x over the interval [0, t]
is defined as

vt(x) := x⊕t + x	t

For example when xt has almost everywhere a derivative ẋt,

x⊕t =
∫ t

0

(ẋs)+ds, x	t =
∫ t

0

(ẋs)−ds and vt(x) =
∫ t

0

|ẋs|ds

where x± := max(±x, 0).
We have learned from the Probability Theory or Real Analysis courses that

in such case the integral

It =
∫ t

0

hsdxs

is well defined as a Lebesgue Stieltjes integral. When the integrand h is piecewise
continuous or it has finite variation this is a Riemann Stieltjes integral defined
as limit of Riemann sums.

It = lim
∆(Π)→0

∑
i

hsi(xti+1 − xti)

where Π =
{

0 = t0 ≤ s0 ≤ t1 ≤ s1 ≤ t2 ≤ · · · ≤ tn−1 ≤ sn ≤ tn = t
}
is a

partition of [0, t] and ∆(Π) := maxi≤n(ti − ti−1)
This Riemann-Stieltjes integral does not depend on the sequence of parti-

tions and the choice of the middle point.

In 1900, Luis Bachelier in his Ph.D. thesis Theorie de la speculation invented
a new probabilistic model to descibe the behaviour of the stock exchange in
Paris. This is a stochastic process (Bt(ω))t∈R+ , defined in continuous time as
follows:
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Definition 1. 1. For 0 ≤ s ≤ t, the increments (Bt(ω)−Bs(ω)) are stochat-
ically independent over disjoint intervals, and have gaussian distribution
with 0 mean and variance (t− s).

2. for (P -almost) all ω the trajectory t 7→ Bt(ω) is continuous.

In 1905 Einstein introduced independently the very same mathematical
model and results to explain the thermal motion of pollen particles suspended
in a liquid, which haad been observed by the botanist Brown.

Unfortunately, the importance of the work of Bachelier was not recognized
at his times, so that Bt is called Brownian motion or Wiener process, after
Norbert Wiener who started the theory of stochastic integration. In textbooks
it is also denoted by Wt. In honour of Bachelier we like to use the Bt notation.

In fact, although Kolmogorov (1933) showed that the paths Bt(ω) are al-
mosty surely Hölder continuous that is the random quantity

sup
{
|Bt(ω)−Bs(ω)|
|t− s|α

: 0 ≤ s, t,≤ T, s 6= t

}
<∞ P − almost surely

for all 0 < α < 1/2 in every compact [0.T ], with probability 1 the paths are
nowhere differentiable and have infinite variation.

For integrand paths hs(ω) of finite variation using the integration by parts
formula we define for every ω∫ t

0

hs(ω)dBt(ω) := Bt(ω)ht(ω)− h0(ω)B0(ω)−
∫ t

0

Bs(ω)dhs(ω)

This trick does not work for the integral∫ t

0

Bs(ω)dBs(ω)

It was in 1944 that Kyoshi Ito extended Wiener integral to the class of non-
anticipative integrand processes. This was the beginning of modern stochastic
analysis.

For the history, in 1940 the german-french mathematician Wolfgang Doe-
blin fighting on the french side was surrounded by the nazis and, before com-
miting suicide, sent to the french academy of sciences a letter to be opened 60
years later. This letter, published in year 2000, contained many of the ideas on
stochastic differential equations that Ito was developing.

In Ito calculus we have the change of variable formula

Theorem 1. for f ∈ C2

f(Bt) = f(B0) +
∫ t

0

f ′(Bs)dBs +
1
2

∫ t

0

f ′′(Bs)ds

We give a sketch of the proof (later we will generalize it by using martingale
theory) by using telescopic sum and Taylor expansion.
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For 0 = t0 < t1 < · · · < tn = t

f(Bt) = f(B0) +
n∑
i

(
f(Bti)− f(Bti−1)

)
= f(B0) +

n∑
i

f ′(Bti−1)(Bti −Bti−1) +
1
2

n∑
i

f ′′(BSi−1)(Bti −Bti−1)2 =

f(B0) +
n∑
i

f ′(Bti−1)(Bti −Bti−1) +
1
2

n∑
i

f ′′(Bti−1)(Bti −Bti−1)2 +Rn

where Si−1(ω) ∈ [ti−1, ti] is a random time depending on the trajectory Bt(ω)
and the random remainder is

Rn(ω) =
1
2

n∑
i

(f ′′(BSi−1)− f ′′(Bti−1))(Bti −Bti−1)2

For almost all ω, the composition of continuous functions s 7→ f ′′(Bs(ω)) is
continuous, and it is uniformly continuous on compact intervals [0, t]. Therefore
for all ε > 0 there is a random δ(ω) > 0 such that

|f ′′(Bs(ω))− f ′′(Br(ω))| < ε

for s, r ∈ [0, t] with |s− r| < δ(ω). In particular,

|Rn(ω)| ≤ ε
n∑
i

(Bti −Bti−1)2

when ∆(Π) < δ(ω). We use the following result:

Lemma 1. As the step-size of the partition ∆→ 0,( n∑
i

(Bti −Bti−1)2

)
L2(P )→ t :=

∫ t

0

dBsdBs , (1)

which implies convergence in probability. This limit is called quadratic variation
and denoted by the square bracket [B,B]t = [B]t

It follows that |Rn(ω)| P→ 0 as ∆(Π)→ 0. We have also

1
2

n∑
i

f ′′(Bti−1)(Bti −Bti−1)2 P→
∫ t

0

f ′′(Bs)ds

where the integral on the right hand side is defined for almost every ω as a
Riemann-Stieltjes integral. This follows directly when f ′′(x) is piecewise con-
stant and otherwise we can approximate f(x) by a sequence of functions f (n)(x)
with piecewise constant second derivatives converging uniformly on compacts.

This means that sequence of Riemann sums converges in probability to the
Ito’s stochastic integral

lim
∆(Π)→0

∑
i

f ′(Bti)(Bti+1−Bti)
P→
∫ t

0

f ′(Bs)dBs = f(Bt)−f(B0)−1
2

∫ t

0

f ′′(Bs)ds

(2)
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Note that for a continuous path xt with finite variation vt(x) on the interval
[0, t] we have

n∑
i

(xti − xti−1)2 ≤ vt(x) max
i=1,...,n

|xti − xti−1 | → 0 as ∆(Π)→ 0

since xs is uniformly continuous on [0, t] so that the second order term in Ito’s
formula vanishes, giving

f(xt) = f(x0) +
∫ t

0

f ′(xs)dxs

Proof of Lemma 1 By definition of Brownian motion the increments
∆Bi = (Bti − Bti−1) are independent Gaussian with zero mean and variance
∆t = (ti − ti−1). Since from gaussianity it follows E

(
(∆Bi)4

)
= 3(∆ti)2, using

independence,

E

({
t−
∑
i

(∆Bi)2

}2)
E

({∑
i

(
(∆Bi)2 −∆ti

)}2)
=

∑
i

E

({
(∆Bi)2∆ti

}2)
+ 2

∑
j<i

E

({
(∆Bi)2 −∆ti

}{
(∆B2

j −∆tj

})
=

∑
i

E

(
(∆Bi)4 + (∆ti)2 − 2(∆Bi)2∆ti

)
+ 2

∑
j<i

E

(
(∆Bi)2 −∆ti

)
E

(
(∆B2

j −∆tj

)
=

∑
i

(
3(∆ti)2 + (∆ti)2 − 2∆ti

)
= 2

∑
i

(∆ti)2 ≤ max
i

∆ti
∑
i

∆ti = t∆(Π)→ 0

From this convergence in quadratic mean follows convergence in probability by
using Chebychev inequality.

If the sequence of partitions is refining, meaning that Πn ⊇ Πn−1, we can use
the martingale convergence theorem to replace convergence in probability with
the stronger almost sure convergence in the definitions of the quadratic variation

and Ito integral
(
t∫

0

f(Bs)dBs

)
. We give a simple proof for the special case of

dyadic partitions.

Lemma 2. Consider the dyadic partitions Dn := (t(n)
i = i2−nt : i = 0, 1, . . . , 2n).

For the sequence Πn = Dn the limiting relation 1 holds also for P -almost sure
convergence.

Proof since ∆t(n)
i = t

(n)
i − t(n)

i−1 = 2−n,

E

({
t−

∑
i∈Dn

(∆B(n)
i )2

}2)
= 2 · 2−nt

Let ε > 0 and

An,ε =
{
ω :
∣∣∣∣t− ∑

i∈Dn

(∆B(n)
i )2

∣∣∣∣ > ε

}
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Since from Chebychev’s inequality

P (An,ε) ≤ 2t2−nε−2

we have ∑
n

P (An,ε) ≤ ε−24t <∞

From Borel Cantelli lemma it follows ∀ε > 0

P
(
lim sup

n
An,ε

)
= 0

This means almost sure convergence, since taking countable union over ε = m−1

and complement, we obtain

P

( ⋃
m∈N

⋂
k∈N

⋃
n≥k

An

)
= 0⇐⇒ 1 = P

( ⋂
m∈N

⋃
k∈N

⋂
n≥k

Acn

)
= P

(
lim
n→∞

∑
i∈Dn

(∆B(n)
i )2 = t

)
�

Remark It is not wrong to say that the Brownian path (Bt(ω) : t ∈ [0, 1])
corresponds to an infinite dimensional random vector uniformly distributed on
the surface of the infinite dimensional unit sphere.
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2 Kolmogorov’s extension
We prove first Daniell-Kolmogorov extension theorem which tells when a stochas-
tic process (Xt) indexed by a time parameter t ∈ T exists as collection of random
variables.

Whether this collection of random variables can be combined together into
a random path with some continuity properties with respect to the parameter,
is the content of Kolmogorov’s continuity theorem.

Definition 2. Let (Ω,F , P ) be a probability triple. A stochastic process is a col-
lection of random variables (Xt(ω))t∈T with values in (Rd,B(Rd) with parameter
set T .

In these lectures we will consider T = N,Z,R,R+,Q but some other index
sets may appear.

Definition 3. Let X = (Xt(ω))t∈T and X ′ = (X ′t(ω))t∈T R-valued stochastic
processes on the respective probability spaces (Ω,F , P ) and (Ω′,F ′, P ′). We say
that X and X ′ are versions the same process if their finite dimensional laws
coincide: ∀k ∈ N, t1. . . . tk ∈ T B1, . . . Bk ∈ B(Rd)

P

(
Xt1 ∈ B1, . . . , Xtk ∈ Bk

)
= P ′

(
X ′t1 ∈ B1, . . . , X

′
tk
∈ Bk

)
Definition 4. Let X = (Xt(ω))t∈T and Y = (Yt(ω))t∈T R-valued stochastic
processes on the same probability space (Ω,F , P ) We say that X and Y are
modifications of each other if ∀t ∈ T

P
(
Xt = Yt

)
= 1

Definition 5. Let X = (Xt(ω))t∈T and Y = (Yt(ω))t∈T R-valued stochastic
processes on the same probability space (Ω,F , P ) We say that X and Y are
indistinguishable when

P
(
ω : Xt(ω) = Yt(ω) ∀t ∈ T

)
= 1

Exercise 1. When X and Y are indistinguishable, they are modification of each
other. When X and Y are each others’ modifications, they share the same finite
dimensional laws. Show a simple example of a X,Y which are modfication of
each other but not indistinguishable.

Definition 6. We say that the family of finite dimensional distributions

Pt1,...,tn : B(Rn)→ [0, 1], with n ∈ N, t1, . . . , tn ∈ T

is consistent , when

•

Pt1,...,tn(A1 × · · · ×An) = Ptπ(1),...tπ(n)

(
Atπ(1) · · · ×Atπ(n)

)
∀n ∈ N, A1, . . . An ∈ B(R), t1, . . . , tn ∈ T, ∀ permutation π
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•
Pt1,...,tn(A1 × · · · ×An) = Pt1,...,tn,tn+1(A1 × · · · ×An,R)

Theorem 2. (Daniell-Kolmogorov,1933) Let(
Pt : t ∈

∞⋃
n=1

Tn
)

a consistent family of finite dimensional probability distributions with arbitrary
index set T .

There exist a unique probability measure P on the product space Ω = RT
equipped with the cylinder σ-algebra generated by the product topology, such that
∀n ∈ N, t1, . . . , tn ∈ N, Bn ∈ B(Rn),

P
(
ω ∈ RT : (ωt1 , . . . , ωtn) ∈ Bn

)
= Pt1,...,tn(Bn) (3)

Proof
The elements of Ω = RT are functions t 7→ ωt. σ(C) coincides with the small-

est σ-algebra on Ω = RT which makes the canonical evalutions ω 7→ Xt(ω) = ωt
measurable for all t ∈ T .

We define the cylinders’ algebra C with typical elements

C =
{
ω ∈ RT : (ωt1 , . . . , ωtn) ∈ Bn

}
where n ∈ N, t1, . . . , tn ∈ N, Bn ∈ B(Rn).

We take (3) as a definition of the map P : C → [0, 1].
By using the consistency assumption you can check that P(C) does not

depend on the particular representation of a cylinder C ∈ C.
Since every finite number of cylinders can be represented on a common

index set, since the finite dimensional distributions are proabilities, it is also
not difficult to check that P is finitely additive on C.

The next step is to use Charatheodory’s theorem to extend P to a σ-additive
probability measure defined on the σ-algebra σ(C).

All we need to show is that P is σ-additive on the algebra C, that is
If {Cn : n ∈ N} ⊆ C is a sequence of cylinders such that

Cn ⊇ Cn+1∀n, and
⋂
n∈N

Cn = ∅,

necessarily limn→∞P(Cn) = 0.

We proceed by contradiction, assuming P(Cn) ≥ ε > 0 ∀n and showing that⋂
n∈N

Cn 6= ∅.

By choosing the representations and eventually repeating the cylinders in
the sequence, we always find a sequence (tn) ⊆ T and a sequence of cylinders
{Dn : n ∈ N} with representations

Dn =
{
ω ∈ RT : (ωt1 , . . . , ωtn) ∈ An

}
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where An ∈ B(Rn), such that Dn ⊇ Dn+1∀n, and for all m ∈ N there is some n
such that Dn = Cm.

It follows that P(Dn) ≥ ε > 0 ∀n and
⋂
n∈N Cn =

⋂
n∈N Dn.

Now since Pt1,...,tn is a probability measure on Rn, and An is Borel mea-
surable, there is a closed set Fn ⊆ An with Pt1,...,tn(An ⊆ Fn) < ε2−n. By
σ-additivity, intersecting Fn with a ball large enough centered around the ori-
gin we find also a compact Kn ⊆ An with

Pt1,...,tn(An \Kn) < ε2−n

Consider the cylinders

Fn =
{
ω ∈ RT : (ωt1 , . . . , ωtn) ∈ Kn

}
Since these are not necessarily included into each other we take the intersections

F ′n =
n⋂

m=1

Fk =
{
ω ∈ RT : (ωt1 , . . . , ωtn) ∈ K ′n

}
where K ′n ⊆ Kn are compacts. We have

Pt1,...,tn(K ′n) = P(F ′n) = P(Dn)−P(Dn \ F ′n) =

Pt1,...,tn(An)− Pt1,...,tn
( n⋃
m=1

(An \Km)
)

≥ Pt1,...,tn(An)− Pt1,...,tn
( n⋃
m=1

(Am \Km)
)

≥ P(Dn)−
n∑

m=1

P(Dm \ F ′m) ≥ ε−
n∑

m=1

ε2−m > 0

Therefore for each n, ∃(x(n)
1 . . . , x

(n)
n ) ∈ K ′n 6= ∅.

Since the sequence F ′n is non-increasing, necessarily the sequence (x(n)
1 ) ⊆

K ′1. By compactness, there is a convergent subsequence x(nl)
1 → x∗1 ∈ K ′1.

The subsequence (x(nl)
1 , x

(nl)
2 ) ⊆ K ′2, and there is a convergent subsequence

with limit (x∗1, x
∗
2) ∈ K ′2.

By induction, we find a sequence (x∗n) with (x∗1, . . . , x
∗
n) ∈ K ′n ∀n. The set

D∗ =
{
ω ∈ RT : ωtn = x∗n ∀n

}
⊆ F ′n ⊆ Dn ∀n ∈ N

is nonempty, contradicting the hypothesis �

Definition 7. A Borel space (S,S) is a measurable space which can be mapped
by a one-to-one measurable map f with measurable inverse to a Borel subset of
the unit interval ([0, 1],B([0, 1])).

Lemma 3. In a Borel space, the σ-algebra S is countably generated.
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Corollary 1. Kolmogorov extensions theorem applies to processes (Xt(ω))t∈T
taking vaues in a Borel space (S,S), (for example Rd), without restrictions on
the parameter set T .

Proof By using a measurable bijection f : S ↔ B ∈ B([0, 1]), we define first
a stochastic process (Yt(ω)) with values in [0, 1] and obtain Xt(ω) = f−1(Yt(ω))
with values in S.

Exercise 2. A separable metric space (S, d) equipped with the Borel σ-algebra
generated by the open sets is a Borel space.

Hint: there is countable set {xn}n∈N which is dense in S. ∀x ∈ S there is a
subsequence {xnk}k∈N such that d(xnk , x)→ 0.

Solution: We construct such subsequence explicitely as follows: let

nk = arg min
1≤m≤2k

{d(xm, x)}

where we use lexicographic order in case of ambiguity.
Since nk ≤ 2k it has a binary expansion

nk =
k−1∑
m=0

x(k)
m 2m, x(k)

m ∈ {0, 1}

so we can code nk by the word (x(k)
0 , . . . , x

(k)
k−1) ∈ {0, 1}k, By concatenating

these words we obtain the binary expansion of some u ∈ [0, 1]. This map is one-
to-one, from u we can recover the subsequence and (xnk) and the limiting point
x0. Although this map does not need to be continuous, it is measurable with
measurable inverse: you can check that the image of a ball centered around
some xn is a Borel set in [0, 1], and the inverse image of (k2−n, (k + 1)2−n]
0 ≤ k ≤ 2−n is a Borel set in S.

Warning: Working with random processes taking values in non-separable
spaces can be tricky, since Kolmogorov theorem does not apply directly. During
this lecture course we will stay on the safe side.

3 Continuity
So far we have constructed the probability measure P on (Ω = RT , σ(C)) such
that the canonical process Xt(ω) = ωt follows the specified family of finite di-
mensional distribution. Suppose T is a topological space which is not countable,
for example T = R. In such case, the set

A = {ω : t 7→ ωt is continuous at all t ∈ T }

does not belong to σ(C) simply because to check continuity in an uncountable
set we need uncountably many evaluations of the function t 7→ ωt. In other
words, 1A(ω) is not a random variable.

Theorem 3. (Kolmogorov’s continuity criterium)
We denote the dyadic subsets of [0, 1]d by

D =
⋃
m∈N

Dm where Dm := {2−m(k1, . . . , kd) : 0 ≤ ki ≤ 2m}, m ∈ N.
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Note that D is countable and dense in [0, 1]d.
On a probability space (Ω,F , P ), let (Xt : t ∈ T = [0, 1]d) a stochastic process

with values in a normed vector space (E, ‖ · ‖E) (for example E = Rm) When
for p, r > 0

E

(
‖ Xt −Xs ‖pE

)
≤ c|t− s|d+r

for all t, s ∈ T , then for all 0 < α < r/p

‖ Xt(ω)−Xs(ω) ‖E≤ Kα(ω)|t− s|α ∀s, t ∈ D

with Kα ∈ Lp(Ω), in particular Kα(ω) <∞ P -almost surely.

Proof
Let Nm =

{
(s, t) ∈ Dm : |s − t| = 2−m

}
, the set of nearest neighbors pairs

at level m.
Since #Nm = 1

2

∑
s∈Dm #

{
neighbors of s

}
≤ 2−12d(m+1)2d

E

(
sup

(s,t)∈Nm
‖ Xt −Xs ‖p

)
≤

∑
(s,t)∈Nm

E
(
‖ Xt −Xs ‖p

)
≤ (2d(m+1)d)(c2−m(d+r)) = 2ddc2−mr (4)

For t ∈ D let tm the nearest element in Dm.
Either tm+1 = tm or |tm+1 − tm| = 2−(m+1), that is (tm, tm+1) ∈ Nm+1.

Define analogously (sm) for s ∈ D. Since t, s ∈ D implies t, s ∈ Dk for some k
large enough, by using telescopic sums

Xt −Xs = (Xtm −Xsm) +
∞∑
k=m

(Xtk+1 −Xtk)−
∞∑
k=m

(Xsk+1 −Xsk)

where we sum over finitely many non-zero terms. Note that if t, s ∈ D, t 6= s,
necessarily 2−(m+1) < |t− s| ≤ 2−m for some m ∈ N. In such case, (tm− sm) =
2m that is tm and sm are neighbors in Dm By starting the telescoping sum from
such m,

‖ Xt −Xs ‖≤‖ tm − sm ‖ +
∞∑
k=m

‖ Xtk+1 −Xtk ‖ +
∞∑
k=m

‖ Xsk+1 −Xsk ‖

which gives

sup
{
‖ Xt −Xs ‖p: t, s ∈ D, 2−(m+1) < |t− s| ≤ 2−m} ≤ 3

∞∑
k=m

sup
(t,s)∈Nm

‖ Xtk+1 −Xtk ‖p

By the triangle inequality in Lp(Ω, P, E) and (4)

E

(
sup

s,t∈D:|s−t|<2−m
‖ Xt −Xs ‖p

)1/p

≤ 3
∞∑
k=m

EP

(
sup

(t,s)∈Nk
‖ Xt −Xs ‖p

)1/p

≤ c̄
∞∑
k=m

2−kr/p = c̄2−mr/p

Fix α < (r/p). By taking union over disjoint sets

E

(
sup

(s,t)∈D:s 6=t

{
‖ Xt −Xs ‖
|t− s|α

}p)1/p

≤ c̄
∞∑
m=0

2mα2−mr/p <∞
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which implies

Kα(ω) := sup
(s,t)∈D:s6=t

‖ Xt(ω)−Xs(ω) ‖
|t− s|α

<∞ P -almost surely (5)

Note that ω 7→ Kα(ω) is measurable and Kα ∈ Lp(Ω). By taking countable
intersections of these events with αn = r

p

(
n
n+1

)
, almost surely (5) holds simul-

taneously for all α < r/p �

Corollary 2. Under the assumptions of Theorem 3, when (E, ‖ · ‖) is complete,
there is a modification X̃t(ω) of the process Xt(ω) with α-Hölder continuous
trajectories for all 0 < α < r/p.

Proof It follows outside a measurable set N with P (N ) = 0, the paths
t 7→ Xt(ω) are uniformly continuous on the compact D.

Therefore for each t ∈ [0, 1]

X̃t(ω) :=

{
lim

s→t,s∈D
Xs(ω) ω ∈ N c

x0 ω ∈ N

is well defined and measurable (x0 ∈ E is chosen arbitrarily).

This follows since, for ω ∈ N c, if sn, s′n ∈ Dn are dyadic sequences with
sn → t and s′n → t, ∀ε > 0 ∃nε(ω) such that ∀m,n > nε(ω)

max
{
‖ Xsn(ω)−Xs′n

(ω) ‖, ‖ Xsm(ω)−Xsn(ω) ‖, ‖ Xs′m
(ω)−Xs′n

(ω) ‖
}
< ε

Therefore for ω ∈ N c Xsn(ω) and Xs′n
(ω) are Cauchy sequences in the complete

space E with a common limit.

Note that X̃s(ω) = Xs(ω) for s ∈ D, and since (Xs(ω))s∈D is α-Hölder
continuous when ω ∈ N c, 0 < α < 2/p by contruction (X̃s(ω))s∈[0,1]d is α-
Hölder continuous ∀ω and all 0 < α < r/p.

From the hypothesis on increments’ moments, by Chebychev inequality we
get for fixed t ∈ [0, 1]d

Xs
P→ Xt as s→ t, s ∈ T

in probability. By starting with a dyadic sequence, we find a subsequence (sk) ⊆
D such that sk → t and P -almost surely

lim
k
Xsk(ω) = Xt(ω)

Since Xs(ω) = X̃s(ω) ∀s ∈ D, it follows that ∀t ∈ [0, 1]d

P ({ω : Xt(ω) = X̃t(ω)}) = 1

that is X̃t(ω) is a continuous modification of Xt(ω).
In particular X̃t and Xt have the same finite dimensional distributions �

11



Note that this continuous modification is unique up to indistinguishability.
If X̂t(ω) is another continuous modification of Xt(ω), necessarily

P (X̂s(ω) = Xs(ω) = X̃s(ω) ∀s ∈ D) = 1
=⇒ P (X̂t(ω) = X̃t(ω) ∀t ∈ [0, 1]d) = 1

Corollary 3. On the probability space (Ω = (R)R, σ(C)), there is a probability
measure PW ( the Wiener measure) and a stochastic process Bt(ω) which sat-
isfies definition 1. Morover there is a modification which has locally α-Hölder
continuous paths t 7→ Bt(ω) ∀ω ∈ Ω for any 0 < α < 1/2.

Locally means that α-Hölder continuity holds on compacts.
Note by taking images, the Wiener measure PW is also defined on the spaces

C(R+;R), Cα(R+;R) of continuous and locally α-Hölder continuous functions,
for 0 < α < 1/2. Under the Wiener measure, in these function spaces the
canonical process is a Brownian motion.

Proof We first take T = [0, 1] Ω = R[0,1] Definition 1 determines consis-
tently the family of finite dimensional distributions of Brownian motion. By
Kolmogorov extension theorem, there a probability measure PW on (Ω, σ(C))
consistent with the finite dimensional distributions’ specification. In particular
the canonical process Xt(ω) = ωt has gaussian increments (Xt(ω) −Xs(ω)) ∼
N(0, t− s).

The gaussian distribution has the following property: if G(ω) is a gaussian
random variable with E(G) = 0, then E(G2n+1) = 0 ∀n, and there are constants
(cn) such that

E(G2n) = cn{E(G2)}n

By the continuity theorem with d = 1 and p = 2n, n ∈ N we get

E(|Xt −Xs|2n) = cn|t− s|n = cn|t− s|1+(n−1) ∀n ∈ N

from which it follows that (Xt(ω)) has a modification (Bt(ω)) which is α-Hölder
continuous for all α with

α < sup
n∈N

(n− 1)
2n

= 1/2

Let (B(n)
t )t∈[0,1] a sequence of independent copies of the Brownian motion

defined on the canonical space of continuous function Ωn = C([0, 1],R) equipped
with the Wiener measure. Note that since C([0, 1],R) is separable there is not
problem to apply Kolomogorov theorem to define the product measure on the
infinite product space.

By concatenating these independent copies into a single continuous path we
obtain a Brownian motion indexed by T = [0,+∞), or T = R.

4 Exercises
1. When f ∈ C2, from 1 we get the semimartingale decomposition of the

process f(Bt(ω)) as an Ito integral plus a process with finite variation of
on compacts. Write the semimartingale decomposition in the following
cases

12



• f(x) = xn; f(x) = sin(x); f(x) = exp(x).
• f(x) = h(g(x)), f(x) = h(x)g(x) where h and g are some functions

above.

2. Let (Bt(ω))t≥0 and (Wt(ω))t≥0 two indepenent Brownian motions defined
on the same probability space. Adapt the proof of lemma 1 to show that
quadratic covariation

[W,B]t = lim
∆(Π)→0

∑
i

(Wti+1 −Wti)(Bti+1 −Bti)
P→ 0 (6)

where we take the limit over partitions Π = (0 = t0 ≤ t1 ≤ · · · ≤ tn = t),
n ∈ N as ∆(Π)→ 0 Hint: take the limit in L2(P ) and use independence.
The process [W,B]t is called quadratic covariation .
Adapt the proof of lemma 2 that for the dyadic sequence of partitions
Πn = Dn we have also almost sure convergence in (6).

3. Let (S,S) a Borel space, and K(x, dy) a probability kernel, that is a map
K : S × S :→ [0, 1], such that

(a) ∀x ∈ S the map A 7→ K(x,A) is a probability measure
(b) ∀A ∈ S, the map x 7→ K(x,A) is measurable

• Let x ∈ S. Use Kolmogorov’s extension theorem to show that there
exist a probability measure Px on the space of sequences Ω = SN such
that the collection of canonical random variables (Xt(ω) = ωt, t ∈ N)
satisfies for all n, A1, . . . , An ∈ S,

Px

(
X0(ω) ∈ A0, X1(ω) ∈ A1, . . . , Xn(ω) ∈ An

)
=

1A0(x)
∫
A1×···×An−1×An

K(xn−1, dxn)K(xn−2, dxn−1) . . .K(x, dx1)

• Let

Kn(x, dy) := Px(Xn ∈ dy), n ∈ N (7)

Show that Kn(x, dy) n ∈ N is a probability kernel.
• Show that the Chapman-Kolmogorov equation holds: for all m,n ∈
N

Kn+m(x, dy) =
∫
S

Kn(x, dz)Pm(z, dy) (8)

• Let π(dx) a probability measure on (S,S). Show that there exist a
probability measure Pπ on the space of sequences Ω = SN such that
the collection of canonical random variables (Xt(ω) = ωt, t ∈ N)
satisfies for all n, A0, A1, . . . , An ∈ S,

Pπ

(
X0(ω) ∈ A0, X1(ω) ∈ A1, . . . , Xn(ω) ∈ An

)
=
∫
A0×A1×···×An−1×An

K(xn−1, dxn)K(xn−2, dxn−1) . . .K(x0, dx1)π(dx0)

13



The process (Xt(ω) : t ∈ N) is called the time homogeneous Markov-
process with initial distribution π(dx) and transition kernel K(x, dy).

• Let (S,S, λ) a measurable space, where we assume that λ is a σ-finite
positive measure with no atoms, that is λ({x}) = 0 for all x ∈ S.

4. • Use Kolmogorov consistency theorem to show that there is real val-
ued random process (WA(ω) : A ∈ S with λ(A) < ∞) indexed by
sets, such that:
∀A ∈ S with λ(A) < ∞, WA(ω) is a gaussian random variable with
0 mean and variance λ(A);WA ⊥⊥WB when A,B ∈ S and A∩B = ∅.

Moreover we ask that A→ WA(ω) is finitely additive for all ω, that
is for A ∩B = ∅, with λ(A ∪B) <∞, WA∪B(ω) = WA(ω) +WB(ω)
WA(ω) is called Wiener noise or white noise driven by λ.

Hint: to show consistency use the following property: ifWi ∼ N (µi, σ2
i ), i =

1, 2 are independent gaussian random variables, then their convolu-
tion is gaussian:

(W1 +W2) ∼ N (µ1 + µ2, σ
2
1 + σ2

2)

• On the settings of the previous exercise, use Kolmogorov consis-
tency theorem to show that there is a N-valued random process
(NA(ω) : A ∈ S) such that:

∀A ∈ S with λ(A) < ∞, NA(ω) is a Poisson random variable with
parameter λ(A); NA ⊥⊥ NB when A,B ∈ S and A ∩B = ∅.

Moreover we ask that A → NA(ω) is finitely additive for all ω, that
is for A ∩B = ∅, with λ(A ∪B) <∞, NA∪B(ω) = NA(ω) +NB(ω)
The centered process ÑA(ω) := (NA(ω) − λ(A)) is called Poisson
noise driven by λ.

Hint: to show consistency use the following property: ifNi ∼ Poisson(λi), i =
1, 2 are independent Poisson random variables, then their convolution
is Poisson:

(N1 +N2) ∼ Poisson(λ1 + λ2)

5 Conditional expectation
Let (Ω,F , P ) a probability space and G ⊆ F a sub σ-algebra. Let X(ω) ≥ 0 be
a random variable F ≥ 0. A G-measurable random variable Y (ω) is a version
of the conditional expectation EP (X|G)(ω) if ∀G ∈ G

EP (X1G) = EP (Y 1G)

More in general when X(ω) = X+(ω)−X−(ω) with X±(ω) ≥ 0, we take define

EP (X|G)(ω) = EP (X+|G)(ω)− EP (X−|G)(ω)

14



the right hand side is well defined. Otherwise the conditional expectation does
not exists.

Altough in most of the textbooks it is assumed EP (|X|) <∞, our extended
definition makes sense and could be useful.

For example, let Z(ω) = bX(ω)c ∈ Z, the integer part of the random variable
X, and let G = σ(Z).

Then the random variable

Y (ω) :=
∑
z∈Z

∫
[z,z+1)

xPX(dx)

PX([z, z + 1))
1(Z(ω) = z)

with the convention that 0
0 = 0, satisfies the definition of EP (X|G)(ω) even

when X in not integrable (in such case Y is also not integrable).

Lemma 4. X(ω) ≥ 0 P a.s =⇒ EP (X|G)(ω) ≥ 0.

Proof By contradiction, assume that Y (ω) = EP (X|G)(ω) < 0 with positive
probability. Then ∃n such that P (G) > 0, where

G =
{
ω : Y (ω) < −1/n

}
is G-measurable since Y is. Then by the definition of conditional expectation

0 ≤ EP (X1G) = EP (Y 1G) ≤ − 1
n
P (G) < 0

which gives a contradiction since the last inequality is strict.

Proposition 1. These properties follow directly from the definition of condi-
tional expectation and positivity, when the conditional expectations do exist.

1. Linearity

2. Monotone convergence: if 0 ≤ Xn(ω) ↑ X(ω) P a.s. =⇒ EP (Xn|G)(ω) ↑
EP (X|G)(ω) P a.s.

3. Fatou lemma: 0 ≤ Xn(ω) =⇒ EP (lim inf Xn|G)(ω) ≤ lim infnEP (Xn|G)(ω)
P a.s.

4. Dominated convergence: if |Xn(ω)| ≤ Y (ω) where Y (ω) is G measurable
and Xn(ω) → X(ω) P almost surely, then EP (Xn|G)(ω) → EP (X|G)(ω)
P -almost surely.

5. if Y is G measurable,

EP (XY |G)(ω) = Y (ω)EP (X|G)

6. when H ⊆ G ⊆ G are nested σ-algebrae

EP (X|H) = EP
(
EP (X|G)

∣∣H)
7. When H is independent from the σ-algebra σ(X) ∨ G,

EP (X|G ∨ H) = EP (X|H)

Hint: it is enough to use independence checking the definition of condi-
tional expectation for the sets {G∩H : H ∈ H, G ∈ G} which generate the
σ-algebra G ∨ H.
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8. Jensen inequality: if f(x) is a convex function (for example f(x) = |x|p
for p ≥ 1),

f
(
EP (X|G)

)
≤ EP (f(X)|G)

Theorem 4. When X ∈ L2(Ω,F , P ) , then the conditional expectation Y =
EP (X|G) exists as the orthogonal projection of X to the closed subspace L2(ω,G, P ).

Hint. By using completeness one shows the orthogonal projection is well
defined as the element of L2(ω,G, P ) minimizing

EP ((X − Z)2)

among all Z ∈ L2(ω,G, P ). Since (Y + tZ) ∈ L2(ω,G, P ) for every t ∈ R,

EP ((X − Y − tZ)2) ≥ EP ((X − Y )2)⇐⇒ t2EP (Z2)− 2tEP ((X − Y )Z) ≥ 0

for all t. Letting t → 0 we see that necessarily EP ((X − Y )Z) = 0, so that
Y = EP (X|G) according to the definition.

Corollary 4. When X ∈ L1(Ω,F , P ) the conditional expectation Y = EP (X|G)
exists in L1(Ω,G, P )

Proof When X(ω) ≥ 0 take X(n)(ω) = (X(ω) ∧ n) ∈ L2. By the pre-
vious theorem and positivity exists 0 ≤ Y (n) = EP (X(n)|G) ↑ Y (ω), with G-
measurable limit. By using the monotone convergence theorem we then check
that Y (ω) satisfies the definition of conditional expectation. More in general by
decomposíng X(ω) = (X+(ω)−X−(ω)) with X± = (±X, 0) the result follows
from linearity.

Definition 8. Regular versions

6 Martingales
Definition 9. Let (Ω,F) a probability space. A filtration is an increasing
collection of σ-algebrae (Ft : t ∈ T ) where T = N,R+,Z,R such that for all
s ≤ t Fs ⊆ Ft ⊆ F

Definition 10. A stochastic process (Xt : t ∈ T ) is adapted to the filtration
(Ft : t ∈ T ), if Xt is Ft-meaasurable for all t ∈ T .

Definition 11. A random variable τ(ω) ∈ T = R+,N is a (Ft)-stopping time
if

{ω : τ(ω) ≤ t} ∈ Ft ∀t ∈ T

Equivalently the counting process Nt(ω) := 1(τ(ω) ≤ t) is adapted to the filta-
tion.

Definition 12. Let τ(ω) an (Ft)-stopping time Define

Fτ :=
{
A ∈ F : A ∩ {τ ≤ t} ∈ Ft ∀t ∈ T

}
.

as the stopped σ-algebra.
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Exercise 3. • Check that Fτ is a σ-algebra.

• If σ ≤ τ are (Ft)-stopping times then Fσ ⊆ Fτ

Definition 13. A (sub,super)-martingale with respect to the filtration (Ft)t∈T
is an adapted and integrable process (Xt : t ∈ T ) ⊆ L1(P ) which satisfies the
martingale property: for s ≤ t

EP (Mt|Fs) = Ms

(respectively ≥,≤)

Note the martingale property depends both on the probability measure and
on the filtration.

Exercise 4. Let (Xt : t ∈ N) ⊆ L1(P ) independent random variables with
E(Xt) = 0, and Ft = σ(X1, X2, . . . , Xt) Then Mt = (X1 + · · · + Xt) is a
(Ft)-martingale

Exercise 5. Let (Xt : t ∈ N) ⊆ L1(P ) independent random variables with
E(Xt) = 1, and Ft = σ(X1, X2, . . . , Xt) Then Mt = (X1 × · · · × Xt) is a
(Ft)-martingale

Exercise 6. Let Xn(ω) ∈ Rd a discrete time Markov chain with initial distri-
bution π and transition kernel K

Define the operator (Kf)(x) =
∫

Rd f(y)K(y, dx) = Ex(f(X1))
Check that this is a martingale

Mt(f) =
t∑

s=1

(f(Xs)− (Kf)(Xs−1))

Taking telescopic sums

f(Xt) = f(X0) +
t∑

s=1

(f(Xs)− f(Xs−1) =

f(X0) +
t∑

s=1

(f(Xs)−Kf(Xs−1) +
t∑

s=1

((Kf)(Xs−1)− f(Xs−1))

= f(X0) +Mt(f) +At(f)

(decomposition into martingale and predictable part)

Definition 14. A process (Yt(ω) : t ∈ N) is predictable with respect to the
discrete-time filtration (Ft : t ∈ N), if Yt is Ft-measurable for all t ∈ T .

Proposition 2. Let (Xt) be a martingale and (Yt) a predictable process in the
discrete-time filtration (Ft : t ∈ N). Define the martingale transform

Mt(ω) =
t∑

s=1

Ys(Ms −Ms−1)

When E(|Ys∆Ms|) <∞ ∀s ∈ T , (Mt) is a martingale.
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Proof From the definition we see thatMt is adapted and integrability follows
from triangle inequality. We check the martingale property:

EP (Mt−Mt−1|Ft−1) = EP (Yt(Xt−Xt−1)|Ft−1) = YtEP (Xt−Xt−1|Ft−1) = 0

where we use predictability of Yt together with the definition of conditional
expectation.

In order to check integrability it is enough to use Hölder inequality,

E(|Ys∆Ms|) ≤‖ Ys ‖Lp‖ ∆Ms ‖Lq

for conjugate exponents p, q ∈ [1,+∞], p−1 + q−1 = 1.

6.1 Convergence of forward martingales
Theorem 5. (Doob)

Let (Xt : t ∈ N) a supermartingale with EP (X−t ) <∞,
( here x− = max(−x, 0))).
Then X∞(ω) ∈ L1(Ω) and

lim
t→∞

Xt(ω) = X∞(ω) P -almost surely

with X∞(ω) ∈ L1(Ω)

Note : although X∞(ω) ∈ L1(Ω) we don’t have necessarily convergence in
L1(P ) sense.

Proof Note first that by the supermartingale propery, ∀t ∈ N

E(X+
t ) ≤ E(X0) + E(X−t )

so that
sup
t
E(X+

t ) ≤ E(X0) + sup
t
E(X−t )

where E(|X0|) <∞, so that the sequence (Xt)t∈N is bounded in L1(P ).
Given a < b, we define a sequence of stopping times

σ0(ω) = inf
{
s ∈ N : Xs(ω) < a}

τi(ω) = inf
{
s > σi(ω) : Xs(ω) ≥ b}, σi(ω) = inf

{
s > τi−1(ω) : Xs(ω) < a}, i ≥ 1

We have 0 ≤ σi < τi < σi+1 < . . . , To check that these are stopping times, note
that for each t ∈ N the events

{ω : σi(ω) ≤ t} and {ω : τi(ω) ≤ t}T

are Ft since they depend on the trajectory of the (Ft)-adapted process Xt up
to time t.

Define the investement strategy

Ct(ω) =
{

1 t ∈ (σi, τi] for some i ∈ N
0 t ∈ (τi, σi+1]

18



Note that since τi and σi are stopping times, for all t ∈ N

{Ct = 1} =
⋃
i∈N
{t ∈ (σi, τi]} =

⋃
i∈N
{σi ≤ (t− 1)} ∩ {τi ≤ (t− 1)}c ∈ Ft−1

Since Ct(ω) ∈ {0, 1} is a non-negative and bounded predictable process, it
follows that the martingale transform

Yt(ω) =
t∑

s=1

Cs(ω)∆Xs

has the supermartingale property.
Note that

Yt ≥ (b− a)U[a,b]([0, t])− (Xt − a)−

By taking expectation, since E(Yt) ≤ E(Y0) = 0 from the supermartingale
property, we obtain Doob upcrossing inequality

EP
(
U[a,b]([0, t])

)
≥ 1

(b− a)
EP
(
(Xt − a)−

)
Now since U[a,b]([0, t]) is non-decreasing, for every ω exists

U[a,b]([0,∞), ω) := lim
t→∞

U[a,b]([0, t]) ∈ N ∪ {+∞}

and by monotone convergence theorem, since

(Xt − a)− = max(a−Xt, 0) ≤ |a|+X−t

we obtain

EP
(
U[a,b]([0,∞), ω)

)
= lim
t→∞

EP
(
U[a,b]([0, t])

)
≤ 1

(b− a)

(
|a|+sup

t∈N
EP (X−t )

)
<∞

In particular U[a,b]([0,∞), ω) <∞ P -almost surely.
Now let

N =
{
ω : lim inf

t→∞
Xt(ω) � lim sup

t→∞
Xt(ω)

}
=

⋃
a<b∈Q

{
ω : lim inf

t→∞
Xt(ω) ≤ a < b ≤ lim sup

t→∞
Xt(ω)

}
=

⋃
a<b∈Q

{
U[a,b]([0,∞), ω) =∞

}
so that P (N) = 0 since is the countable union of null sets.

This means that P -almost surely (Xt(ω))t∈N is a converging sequence with
limit X∞(ω) := lim supt→∞Xt(ω), ∀ω ∈ Ω.

Note that a priori X∞(ω) ∈ [−∞,∞].

By using Fatou lemma

E(|X∞|) = E(lim inf
t
|Xt|) ≤ lim inf

t
E(|Xt|) ≤ sup

t
E(|Xt|) <∞

In particular |X∞(ω)| <∞ P -almost surely �.

19



Corollary 5. A non-negative supermartingale Xt has almost surely an inte-
grable limit X∞ with EP (X∞) ≤ EP (Xt) for t <∞.

Proof For all t ∈ N

EP (|Xt|) ≤ EP (Xt) = EP
(
EP (Xt|F0)

)
≤ EP (X0) = EP (|X0|)

so that L1 boundedness follows for free and Doob convergence theorem applies
�

Corollary 6. Let (Xt : t ∈ N) a submartingale with EP (X+
t ) < ∞. Then for

P almost all ω ∃ limt→∞Xt(ω) = X∞(ω) ∈ L1(P ).

Proof Apply the theorem to the supermartingale (−Xt)

6.2 Uniform integrability
Let Mt a martingale bounded in L1(P ), with limit M∞ ∈ L1(P ) Does the
martingale property holds at infinity ?, that is

Ms = E(M∞|Fs), s ≥ 0

Definition 15. A collection of random variables {Xt : t ∈ T} is uniformly
integrable (UI) if

lim
k→∞

sup
t∈T

EP
(
|Xt|1(|Xt| > k)

)
= 0

Note that a single random variable X ∈ L1(P ) since by monotone conver-
gence theorem E(|X| ∧ k) ↑ E(|X|) <∞,

E(|X| − |X| ∧ k) = E(|X|1(|X| > k)) ↓ 0 ask ↑ ∞

Proposition 3. The collection of random variables {Xt : t ∈ T} ⊆ L1(P ) is
UI if and only if

for all ε > 0 ∃δ such that

sup
t∈T

EP
(
|Xt|1A

)
< ε

when P (A) ≤ δ.

We have the following characterization convergence in L1(P )-norm:

Proposition 4. Let (Xn : n ∈ N) ⊆ L1(P ) and X ∈ L1(P ) E(|Xn −X|) → 0
if and only if

• Xn
P→ X, and

• The collection {Xn : n ∈ N} is UI

UI is a compactness condition in L1(P ) when we replace the norm topology
by the weak topology:
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Proposition 5. (Dunford Pettis) The collection of random variables C{Xt :
t ∈ T} ⊆ L1(P ) is UI if and only if it is weakly compact in L1(P ) that is for
every sequence (tn) ⊆ T there is a subsequence (tnk) and a random variable
X ∈ L1(P ) such that ∀A ∈ F

EP
(
(Xnk −X)1A

)
→ 0

Proof of =⇒ It is enough to consider the case when Xt(ω) ≥ 0 ∀t, since
weak compacteness of C will follow from weak compactness of (X+

t : t ∈ T )
and (X−t : t ∈ T ). Let (Xn : n ∈ N) ⊆ C and for M ∈ N consider the
truncated random variables X(

nM) = Xn(ω) ∧M . For fixed M , the sequence
(X(M)

n : n ∈ N) is bounded in L2(P ).
Banach-Alaoglu’s theorem says that closed balls in the dual space of a Ba-

nach space are compact under the weak-star topology. Since L2(P ) is the dual
of itself and 1A ∈ L2(P ), it follows that for every M ∈ N there is a subsequence
(nk) (which at first depends on M) and a r.v. X(M) ∈ L2(P ) such that ∀A ∈ F

EP

(
(X(M)

nk
−X(M))1A

)
→ 0 as M →∞

which means X(M)
nk → X(M) weakly in L1(P ) (the dual of L1(P ) is L∞(P ) the

space of essentially bounded random variables, by a monotone class argument
it is enough to check convergence using indicators). By taking further subse-
quences and using a diagonal argument we find a further subsequence (nk) such
that the convergence 6.2) holds simultaneously for all M ∈ N. For M,N ∈ N,
by Fatou lemma for

E
(
|X(M+N) −X(M)|

)
≤ lim inf

k
E
(
|X(M+N)

nk
−X(M)

nk
|
)

≤ sup
t∈T

E
(
|Xt −M |1(|Xt| > M)

)
≤ 2 sup

t∈T
E
(
|Xt|1(|Xt| > M)

)
→ 0 as M →∞

because of the UI assumption.
Therefore (X(M) : M ∈ N) is a Cauchy sequence in the complete space

L1(P ) and it converges in L1(P ) norm to a limit X ∈ L1(P )
For A ∈ F ,∣∣∣∣EP ((Xnk −X)1A

)∣∣∣∣
=
∣∣∣∣EP ((Xnk −X(M)

nk
)1A

)
+ EP

(
(X(M)

nk
−X(M))1A

)
+ EP

(
(X(M) −X)1A

)∣∣∣∣
≤ 2EP

(
Xnk1(Xnk > M)

)
+ EP

(
(X(M)

nk
−X(M))1A

)
+ EP

(
|X(M) −X|)

where we choose first M large enough to make EP
(
|XM − X|) small, and for

such fixed M the first to terms are arbitrarily small for k large enough.

6.3 UI martingales
Lemma 5. Let X ∈ L1(P ). Then the family{

Y = EP (X|G) : G ⊆ F sub-σ-algebra
}
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is uniformly integrable.

Proof Let ε > 0 and δ such that EP
(
|X|1A

)
< ε when P (A) ≤ δ.

Choose k > δE(|X|)−1.
Let Y = EP (X|G) with G ⊆ F sub-σ-algebra.
From Jensen inequality

|Y | ≤ E
(
|X||G

)
so that E(|Y |) ≤ E(|X|) and by Chebychev inequality

P (|Y | > K) ≤ K−1E(|Y |) ≤ K−1E(|X|) < δ

Since {ω : |Y (ω)| > K} ∈ G, by the Jensen inequality for conditional expecta-
tions

E
(
|Y |1(|Y | > K)

)
≤ E(

∣∣X|1(|Y | > K)
)
< ε

Proposition 6. • Let (Mt : t ∈ N) an UI martingale. Then

Mt
L1(P )→ M∞ and Mt = EP (M∞|Ft)

• Let M∞ ∈ L1(P ) and define Mt = EP (M∞|Ft). Then (Mt : t ∈ [0,+∞])
is an UI martingale.

Proof

• From the UI property follows that for any K ≥ 0

sup
t∈N

EP (|Mt|) ≤ K + sup
t∈T

EP
(
|Mt|1(|Mt| > K)

)
<∞

so that Doob martingale convergence theorem applies, there exists M∞ ∈
L1(P ) such that Mt(ω)→ M∞(ω) P a.s. By the UI assuption, using the
characterization of L1(P ) convergence we have EP

(
|Mt −M∞|

)
→ 0.

To show the martingale property,let’s fix t ≥ 0 and A ∈ Ft.
The sequence MT (ω)1A(ω) → M−∞(ω)1A(ω) as T → ∞ and it is obvi-
ously an UI family, so that by the martingale property and charaterization
of L1(P ) convergence, for T ≥ t,

EP (Mt1A) = EP (MT1A)→ EP (M∞1A) �

• When M∞ ∈ L1(P ) From the properties of the conditional expectation
it follows that Mt = EP (M∞|Ft) is integrable, adapted and satisfies the
martingale property.
Uniform integrability follows from lemma (??)�.

6.4 Convergence of backward martingales
Definition 16. A backward filtration is an increasing family of σ-algebrae
(Ft : (−t) ∈ T ) where T = N,R, For 0 ≥ t ≥ u

F ⊇ Ft ⊇ Fu ⊇ F−∞ =
⋂

(−t)∈T

Ft

where F−∞ is the tail σ-algebra . The interpretation is that information in Ft
decreases as t ↓ −∞.
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Definition 17. A backward (sub,super)-martingale with respect to the backward
filtration (Ft)(−t)∈T is an adapted and integrable process (Xt : −t ∈ T ) ⊆ L1(P )
which satisfies the martingale property: for 0 ≥ t ≥ u

EP (Xt|Fu) = Xu

(respectively ≥,≤)

Theorem 6. (Doob backward martingale convergence) Let (Xt : −t ∈ N) a
backward submartingale.

1. P -almost surely, exists the limit

X−∞(ω) = lim
t→−∞

Xt(ω) ∈ [−∞,∞)

2. Under the assumption
sup
−t∈N

E(X−t ) < +∞

X−∞(ω) ∈ L1(P ) and is P -a.s. finite.

3. When (Xt) is a backward martingale the assumption 3 always holds, Xt =
E(X0|Ft) for t ≤ 0 is uniformly integrable and

X−∞(ω) = E(X0|F−∞)(ω)

that is the martingale property hold in the extended time index set (−N)∪
{−∞}.

Proof By copying the proof of the forward convergence theorem for U(a,b)([t, 0])
the number of upcrossing the supermartigale (−Xt) in the interval [t, 0], with
(−t) ∈ N, a < b ∈ R, we get

EP (U[a,b]([t, 0])) ≤ EP ((a+X0)−)
(b− a)

≤ (|a|+ EP (|X0|)
(b− a)

which implies as in the forward case

X−∞(ω) := lim sup
t→−∞

Xt(ω) = lim inf
t→−∞

Xt(ω) P -almost surely

When Xt is a backward martingale by Fatou lemma

E(|X∞|) = E(lim inf
t
|Xt|) ≤ lim inf

t
E(|Xt|) = lim inf

t
E
(
|E(X0|Ft)|

)
≤ lim inf

t
E
(
E(|X0||Ft)|

)
≤ E(|X0|) <∞

where we used Jensen inequality. In the submartingale case, sinceXt ≤ E(X0|Ft)
when t < 0, we have only

X+
t ≤ E(X0|Ft)+ ≤ E(X+

0 |Ft)
X−t ≥ E(X0|Ft)−

In this case to complete the Fatou lemma argument we need the upper bound
(3).
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Finally let A ∈ F−∞ ⊆ F−t ∀t ≤ 0.’ Since Xt = EP (X0|Ft) is uniformly
integrable, when we use the definition of conditional expectation we can take
the limit inside the exepctation getting

EP (X01A) = EP (Xt1A)→ EP (X∞1A)

which means X−∞ = EP (Xt|F−∞).

Exercise 7. ( martingale proof of the law of large numbers)
Let (Xn(ω) : n ∈ N) independent and identically distributed random variables

with X1 ∈ L1(P ), and let

Sn(ω) = X1(ω) + · · ·+Xn(ω)

We introduce the backward filtration (T−n : n ≥ 1) with T−n = σ(Sn, Sn+1, . . . ),
and the backward martingale M−n = EP (X1|T−n).

Note that the information in T−n is decreasing as n→∞.
Since by symmetry the joint laws of the pairs (Sn, Xk) coincide for k =

1, . . . , n

EP (Xk|T−n) = EP (Xk|σ(Sn)) = EP (X1|σ(Sn)) and

Sn = EP (X1 + · · ·+Xn|σ(Sn)) =
n∑
k=1

EP (Xk|σ(Sn)) = nEP (X1|σ(Sn))

which gives M−n(ω) = n−1Sn(ω). By martingale backward convergence theorem
exists M−∞(ω) = limn→∞ n−1Sn(ω). Note that M−∞(ω) is T−n-measurable for
all n, which means it belongs to the tail σ-algebra

T−∞ =
⋂
n∈N
T−n

By Kolmogorov 0-1 law M−∞(ω) ≡ c is deterministic, and necessarily c =
E(X1).

6.5 Exchangeability and De Finetti’s theorem
Definition 18. The random sequence (Xt)t∈N with values in (S,S) is infinitely
exchangeable if for all n, t1, . . . , tn ∈ N and π permutation of {1, . . . , n}, we
have (Xt1 , . . . , Xtn) and (Xtπ(1) , . . . , Xtπ(n)) have the same distribution under
P .

Note that for infinitely exchangeable real valued random variables (Xn)n∈N,
it follows as in the i.i.d. case that

M−n(ω) = n−1Sn(ω) := E(X1|T−n)

is a backward martingale with almost sure limit

M−∞(ω) = E(X1|T−∞)(ω) as n→∞

However without assuming independence, the tail σ-algebra T is non-trivial, and
M−∞(ω) is truly random. This observation leads us to an important result: De
Finetti’s theorem.
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Definition 19. A random sequence (Xk(ω)) with values in (S,S) is condition-
ally independent and identically distributed given the σ-algebra G if for every n,
k1, . . . , kn, A1 . . . An ∈ S.

P (Xk1 ∈ A1, . . . , Xkn |G)(ω) =
n∏
i=1

P (X1 ∈ Ai|G)(ω) P a.s

By taking expectation we see that a conditionally i.i.d. sequence is infinitely
exchangeable.

Theorem 7. (De Finetti) When the sequence (Xk) takes value in a Borel space
(S,S), the opposite implication holds conditionally on a tail σ-algebra T−infty
to be defined below.

Proof We introduce the empirical random measure

µn(dx;ω) = n−1
n∑
i=1

1(Xi(ω) ∈ dx)

which generates the σ-algebra σ(µn) = σ{µn(A) : A ∈ S} ⊆ F .
Note that σ(µn) ⊆ σ(X1, . . . , Xn) but for n > 1 it is strictly smaller since it

forgets the time-order of the random variables.
We introduce the decreasing sequence of σ-algebrae

T−n :=
∨
k≥n

σ(µk) ↓ T−∞ =
⋂
n∈N
T−n , the tail σ-algebra .

Fix k ∈ N and a bounded measurable test function f(x1, . . . , xk) ∈ R. For
n ≥ k we use symmetry to compute EP (f(X1, . . . , Xk)|T−n)(ω).

Define the random probability measure µ◦n : S⊗k → [0, 1] as the regular
version of the conditional probability of (X1, . . . , Xk) given σ(µn) (which exists
since S is a Borel space). By symmetry,

µ◦k(f ;ω) :=
∫
Sk
f(x)µ◦k(dx;ω) =

1
n!

∑
π

f(Xπ(1)(ω), . . . , Xπ(k)(ω))

=
(n− k)!
n!

∑
1≤i1,...,ik≤n distinct

f(Xi1 , Xi2 , . . . , Xik)

where the sum is taken over all permuations π of {1, . . . , n}. Note that µ◦k(dx;ω)
is σ(µn)-measurable, since it depends only on the values taken by {X1(ω), . . . , Xn(ω)}
and not by their order. Note also that µ◦kn (dx) is not a product measure since
by taking permutations repeated indexes are excluded.

By using exchangeability we see that (X1, . . . , Xk, µn) and (Xπ(1), . . . , Xπ(k), µn)
have the same law for every permutation π of {1, . . . , n} which implies

EP (f(X1, . . . , Xk|σ(µn))(ω) = EP (f(Xπ(1), . . . , Xπ(k))|σ(µn))(ω)

By summing over π and dividing by the number of permutations it follows that

µ◦kn (f) = EP (f(X1, . . . , Xk)|σ(µn)) = EP (f(X1, . . . , Xk)|σ(T−n))
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Note first that T−n = σ(µn, Xn+1, Xn+2, . . . ) since find Xn+1(ω) by comparing
µn and µn+1.

Then from infinite exchangeability it follows that in law, for m ∈ N

(X1, X2, . . . , Xn, Xn+1, Xn+2, . . . Xn+m) L= (Xπ(1), Xπ(2), . . . , Xπ(n), Xn+1, Xn+2, . . . Xn+m)

for any permutation π of {1, . . . , n}.

Exercise 8. (X1, . . . , Xn) and (Xn+1, Xn+2, . . . ) are conditionally independent
given σ(µn),

Solution Let Y (ω) ∈ σ(µn) with |Y (ω)| ≤ c. Necessarly Y = f(X1(ω), . . . , Xn(ω))
for some bounded symmetric and measurable f(x1, . . . , xn).

Let g(x1, . . . , xn) and h(y1, . . . , ym) bounded measurable functions, not nec-
essarily symmetric. Using the definition of conditional expectation together with
exchangeability,

EP

(
Y EP

(
g(X1, . . . , Xn)h(Xn+1, . . . , Xn+m)|σ(µn)

))
=

EP

(
Y g(X1, . . . , Xn)h(Xn+1, . . . , Xn+m)

)
=

EP

(
Y g(Xπ(1), . . . , Xπ(n))h(Xn+1, . . . , Xn+m)

)
=

EP

(
Y

1
n!

∑
π

g(Xπ(1), . . . , Xπ(n))h(Xn+1, . . . , Xn+m)
)

=

EP

(
Y EP (g(X1, . . . , Xn|σ(µn))h(Xn+1, . . . , Xn+m)

)
=

EP

(
Y EP (g(X1, . . . , Xn|σ(µn))EP (h(Xn+1, . . . , Xn+m)|σ(µn))

)
where the sum is taken over the permutations of {1, . . . , n}. Since Y is an
arbitrary bounded and σ(µn) measurable,

EP
(
g(X1, . . . , Xn)h(Xn+1, . . . , Xn+m)|σ(µn)

)
= EP (g(X1, . . . , Xn|σ(µn))EP (h(Xn+1, . . . , Xn+m)|σ(µn))

for all bounded measurable g and h, which corresponds to conditional indepen-
dence given σ(µn)

In other words, T−n does not contain any information about the ordering of
the first n-variables.

Therefore M−n(f) := µ◦k(f) is a backward (T−n)-martingale with P -a.s.
limit M−∞(f).

The σ-algebra S of the Borel space S is countably generated, this relation
holds simultaneously for all bounded measurable functions f outside a P -null
set.

Since (X1, . . . , Xk) takes value in a Borel space, the conditional probability
has a regular version, there is a T−∞-measurable probability kernel µ(k)

−∞(dx;ω)
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on S1 × · · · × Sk such that P almost surely for all bounded measutable f

M−∞(f, ω) = EP (f(X1, . . . , Xk)|σ(T−∞))(ω) (9)

=
∫
S1,...,Sk

f(x1, . . . , xk)µ(k)
−∞(dx1, . . . dxk;ω) (10)

For P almost all ω the family of finite dimensional distributions{
µ

(k)
−∞(dx1, . . . dxk;ω) : k ∈ N

}
is consistent (check this) and by Kolmogorov construction they define a random
measure µ∞(·;ω) on the space of sequences (xk : k ∈ N) ⊆ S.

We show that necessarily for almost all ω µ∞(·, ω) is the infinite product of
identical measures.

Consider again f(x1, . . . , xk), and let µ⊗kn denote the k-fold product measure.
Since

µ◦kn (f) = n−k
∑

1≤i1,...,ik≤n

f(Xi1 , . . . , Xik)

which includes also terms with repeated indexes, we have

µ◦kn (f)− µ⊗kn (f) =

µ◦kn (f)
(

1− n!
nk(n− k)!

)
+ n−k

∑
i1,...ik:il=im for some l 6= m

f(Xi1 , . . . , Xik)

where in the first term we collect the terms without repetead variables and in
the second term at least one variable is repeated.

Therefore for fixed k,∀ω,

|µ◦kn (f)− µ⊗kn (f)|

≤‖ f ‖∞
(

1−
k−1∏
l=0

(n− l)
n

+ n−k
(
k

2

)
nk−1

)
→ 0 as n→∞

where ‖ f ‖∞= supx∈S |f(x)|.
Since for P -almost all ω, for every A1, A2 · · · ∈ S

µ◦1n (A1) = µ⊗1
n (A1)→ µ

(1)
−∞(A1)

and

µ◦k−n(A1 ×A2 × · · · ×Ak)→ µ
(k)
−∞(A1 ×A2 × · · · ×Ak)

as n→ −∞, it follows also that

µ⊗k−n(A1 ×A2 × · · · ×Ak) =
k∏
i=1

µ
(1)
−n(Ai)→

k∏
i=1

µ
(1)
−∞(Ai)

with the same limit, so that

µ
(k)
−∞ = (µ(1)

−∞)⊗k
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is a product measure over S1 × · · · ×Sk and µ−∞ is a product measure over
S∞. For bounded measurable functions g1, . . . , gk

EP (g1(X1) . . . gk(Xk)|T−∞)(ω) =
k∏
i=1

{∫
S

gi(x)µ(1)
−∞(dx, ω)

}
By taking expectation we obtain,

EP (g1(X1) . . . gk(Xk)) =
∫
M(S)

{ k∏
i=1

∫
S

gi(x)µ(dx)
}
Q(dµ)

where Q is the probability distribution of µ−∞(ω) inM(S), the space of prob-
ability measures on (S,S).

In other words, an infinitely exchangeable random sequence with values in
a Borel space is a mixture of i.i.d. sequences �

Remark
When S is a separable metric space equipped with the Borel σ-algebra, since

continuous functions are measurable, it follows directly that P almost surely
µ⊗k−n

w→ µ
(k)
−∞ in the sense of weak convergence of probabilities. Note we did not

need to check tightness because the limiting measure was defined as a regular
conditional probability.

Exercise 9. De Finetti proved his theorem first in the simplest case when
S = {0, 1}. In this case M(S) = [0, 1], and Sn = (X1 + · · · + Xn) is a suffi-
cient statistics For an infinitely exchangeable sequence of coin tosses, the limit
µ(ω) := limn→∞ n−1Sn(ω) ∈ [0, 1] exists almost surely, with distribution Q(dµ).
Conditionally on σ(µ) the coin tosses are conditionally independent Bernoulli
random variables with common random parameter µ(ω). The measure Q(dµ) is
the prior probability for the parameter µ. This theorem is the key to understand
the Bayesian approach in statistical inference.

7 Change of measure and Radon-Nikodym the-
orem

Definition 20. Let µ and ν positive measures on the probability space (Ω,F).
We say that ν is absolutely continuous with respect to µ, (also µ dominates

ν) if for all A ∈ F µ(A) = 0 =⇒ ν(A) = 0. In this case we use the notation
ν � µ.

Sometimes we need absolute continuity with respect to some sub-σ-algebra

G ⊆ F . We say that µ dominates ν on G and denote ν
G
� µ.

When both µ� ν and ν � µ we say that the measures are equivalent (that
is they have the same null sets) and denote µ ∼ ν.

Lemma 6. Let Q � P be probability measures on the space (Ω,F). Then for
all ε > 0 there is δ > 0 such that for A ∈ F P (A) < δ =⇒ Q(A) < ε

Proof Otherwise there is ε > 0 and a sequence (An : n ∈ N) ⊆ F with
P (An) ≤ 2−n and Q(An) ≥ ε > 0 By Borel Cantelli lemma P (lim supAn) = 0,
while by reverse Fatou lemma

Q(lim supAn) ≥ lim supQ(An) ≥ ε > 0
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which is in contradiction with the assumption Q� P �

Theorem 8. (Radon-Nikodym) Letµ and ν σ-finite positive measures on the
measurable space (Ω,F). When ν � µ, there is a measurable function Z :
(Ω,F)→ (R+,B(R+)), such that the change of measure formula holds

ν(A) =
∫

Ω

Z(ω)1A(ω)µ(dω) ∀A ∈ F

Proof Since both µ and ν are σ-finite, there is a countable partition Ω =⋃
n∈N Ωn of disjoint measurable sets, such that both µ(Ω)n < ∞ and ν(Ω)n <
∞. By taking Pn(dω) = µ(dω)/µ(Ωn) and Qn(dω) = ν(dω)/ν(Ωn) on each Ωn,
we see that it is enough to prove the theorem for probability measures Q� P .

We assume first that F is countably generated (we say also separable )
F = σ(Fn : n ∈ N) where {Fn}n∈N ⊆ N. This is the case when (Ω,F) is a Borel
space. We will drop this assumption later.

Consider the filtration {Fn} where Fn = σ(F1, . . . , Fn), with F =
∨
n∈N Fn.

For each n, by taking intesections of F1, . . . Fn, we find a Fn-measurable
partition of Ω {A(n)

1 , . . . , A
(n)
mn} with Fn = σ(A(n)

k : k = 1, . . . ,mn).
We define the Fn measurable random variable

Zn(ω) =
mn∑
k=1

Q(A(n)
k )

P (A(n)
k )

1(ω ∈ A(n)
k )

with the convention that 0/0 = 0 (or if you like 0/0 = 1, it does not matter).
Note that by absolute continuity, Q(A(n)

k ) = 0 when P (A(n)
k ) = 0 so that

Zn(ω) takes values in [0,+∞).
It follows that Q(A) = EP (Zn1A) ∀A ∈ Fn.
On fact it is enough to check this property for someA = A

(n)
k k ∈ {1, . . . ,mn},

since these sets generate the σ-algebra Fn. But this follows directly from the
definition.

Note that for every Fn-measurable random variable X(ω) (which is neces-
sarily a simple r.v.) it follows directly that

EQ(X) = EP (XZn)

Note also that EP (Zn) = Q(Ω) = 1.
The process (Zn(ω))n∈N is a (P, {Fn})-martingale. We have seen that (Zn)

is adapted and it is P -integrable since it takes finitely many finite values.
For all A ∈ Fn also A ∈ Fn+1, so that

EP (Zn1A) = Q(A) = EP (Zn1A)

which by definition of conditional expectation means

EP (Zn+1|Fn)(ω) = Zn(ω).

Since (Zn(ω)) is a non-negative martingale, in particular it is a supermartin-
gale bounded from below, and by Doob forward martingale convergence theorem
it follows that P almost surely exists

Z∞(ω) = lim
n→∞

Zn(ω)
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and Z∞ ∈ L1(Ω,F , P ). In order to define Z(ω) for all ω we take the lim sup.
In order to show that Q(A) = EP (Z∞1A) ∀A ∈ F , since the sets Fn generate

the σ-algebra, it is enough to show that Q(Fn) = EP (Z∞1Fn) ∀n.
Since Q(Fn) = EP (ZmFn) for all m ≥ n, in order to show that

EP (Z∞Fn) = lim
m→∞

EP (ZmFn) = Q(Fn)

we need to check uniform P -integrability for the martingale (Zn).
Since Q � P , by lemma 6 for given ε > 0 we can find δ > 0 such that for

A ∈ F and P (A) < δ follows Q(A) < ε.
By Chebychev inequality

P (Zn > K) < K−1EP (Zn) = K−1 ∀n

Choose K > δ−1. Since {ω : Zn(ω) > K} ∈ Fn, by the change of measure
formula

sup
n
EP (Zn1(Zn > K)) = sup

n
Q(Zn > K) < ε

which is the UI-condition:

lim
K→∞

sup
n
EP (Zn1(Zn > K)) = 0

So far we have proved the R-N theorem for countably generated σ-algebrae.
We extend the proof by using convergence of generalized sequences.

We recall this concept from topology:

Definition 21. In a topological space (E, T ) a net is a generalized sequence
(xα : α ∈ I) indexed by a directed set, that is a partially ordered set (I,≤) such
that for every two elements α, β ∈ I there is an element α ∨ β

α ∨ β ≥ α, α ∨ β ≥ β.γ ≥ α and α ≥ β =⇒ γ ≥ α ∨ β

We say that xα → x ∈ E when for every open set U 3 x there is an element ᾱ
such that xα ∈ U for all α ≥ ᾱ.

We consider now the partially order set

G :=
{
G ⊆ F : G is a countably generated σ-algebra

}
where F is not assumed to be separable. Here the ordering relation is the
inclusion ⊆. Note that G′ ∨ G′′ := σ(G′,G′′) is a separable sub σ-algebra.

For each G ∈ G we have shown that there is a random variable 0 ≤ ZG(ω) ∈
L1(Ω,G, P ) such that the change of variable formula holds in G:

Q(A) = EP (ZG1A) ∀A ∈ G

We show that (ZG : G ∈ G) is a Cauchy net in L1(Ω,F , P ), and by com-
pleteness it has a limit Z ∈ L1(Ω,F , P ).

By Cauchy net we mean the following: for all ε > 0 there is a G ∈ G such
that if G′ ⊆ G, G′′ ⊆ G, G′,G′′ ∈ G, then

EP
(
|ZG′ − ZG′′ |) < ε
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By the triangle inequality this it is equivalent to

EP
(
|ZḠ − ZG′ |) < ε

If (ZG) was not a Cauchy net we would find some ε > 0 and a sequence
(Gn : n ∈ N) ⊆ G such that Gn ⊆ Gn+1 and

EP
(
|ZGn − ZGn+1 |) ≥ ε > 0

Let G∞ =
∨
n∈N Gn. G∞ ∈ G and by the previous argument (ZGn : n) would

be an uniformly integrable martingale in the filtration {Gn}, which necessarly
is convergent in L1(P ), giving a contradiction.

In a complete metric space (E, d) every Cauchy net (xα : α ∈ I) is conver-
gent, that is there is an element x∗ ∈ E such that forall ε ∃α with d(x∗, xα) ≤ ε
∀α ≥ α.

We sketch the proof: for every n let αn such that d(x, xα) ≤ n−1 ∀α ≥ αn,
and we can choose αn ≥ αn−1.

Therefore x̃n = xαn is a Cauchy sequence and it as a limit x∗ ∈ E, which
by definition it is also the limit of the net (xα).

Therefore the generalized Cauchy sequence (ZG : G ∈ G) has necessarily a
limit Z∞(ω) ∈ L1(Ω,F , P ).

We next check the change of measure formula.
Let A ∈ F and G ∈ G such that

EP (|Z∞ − ZG′ |) < ε

for all G′ ⊇ G, G′ ∈ G.
Let G̃ := σ(G ∨ F ) ∈ G.
Since

Q(A) = EP (ZeG1A)

we have ∣∣∣∣EP (Z∞1A)−Q(A)
∣∣∣∣ ≤ EP(∣∣Z∞ − ZeG∣∣) < ε

where ε > 0 is arbitrarily small �

8 The Likelihood ratio process

9 Doob optional sampling and optional stopping
theorems

Lemma 7. Let (Xt : t ∈ N) a supermartingale and 0 ≤ τ(ω) ≤ k a bounded
stopping time.

Then E(Xk|Fτ )(ω) ≤ Xτ .

31



Proof For A ∈ Fτ by definition A ∩ {τ = t} ∈ Ft. By using the super-
martingale property

EP (Xk1A) =
k∑
t=0

EP
(
Xk1(A∩{τ = t})

)
≤

k∑
t=0

EP
(
Xt1(A∩{τ = t})

)
= EP (Xτ1A)

Theorem 9. Let (Mt : t ∈ N) an UI martingale, and τ a stopping time. Then

EP (M∞|Fτ )(ω) = Mτ (ω)

Proof Since Fτ∧k ⊆ Fk, k ∈ N and (Mt) is an UI-martingale

EP (M∞|Fτ∧k) = EP (EP (M∞|Fk)|Fτ∧k) = EP (Mk|Fτ∧k)

Let’s assume thatM∞(ω) ≥ 0, otherwise we work withM+
∞,M

−
∞ separately.

For A ∈ Fτ ,

EP
(
M∞1A∩{τ≤k}

)
= EP

(
Mk1A∩{τ≤k})

by the martingale property, since A ∩ {τ ≤ k} is Fk-measurable,

= EP (Mτ∧k1A∩{τ≤k}
)

= EP (Mτ1A∩{τ≤k}
)

=

where we used lemma 7 for the bounded stopping time (τ ∧ k) ≤ k together
with the fact that A ∩ {τ ≤ k} is also F(τ∧k)-measurable. To check this, for all
t ∈ N we have

A ∩ {τ ≤ k} ∩ {τ ∧ k ≤ t} = A ∩ {τ ≤ k ∧ t} ∈ F(t∧k) ⊆ Ft

Since 1(τ(ω) ≤ k) ↑ 1(τ(ω) < ∞) as k ↑ ∞, by the monotone convergence
theorem it follows

EP (M∞1A1(τ <∞)) = EP (Mτ1A1(τ <∞))

and since Mτ1(τ <∞) is Fτ -measurable this means

E(M∞|Fτ )(ω)1(τ(ω) <∞) = Mτ (ω)1(τ(ω) <∞)

The result follows since

M∞(ω)1(τ(ω) =∞) = Mτ (ω)1(τ(ω) =∞) �

Corollary 7. Let τ(ω) ≥ σ(ω) stopping times. and (Mt : t ∈ N) an UI mar-
tingale.

Then Fσ ⊆ Fτ and

EP (Mτ |Fσ) = Mσ (11)

and by taking expectation EP (Mτ ) = EP (M0) for all stopping times τ .
Proof: If Fσ ⊆ Fτ

Mσ = EP (M∞|Fσ) = EP (EP (M∞|Fτ )|Fσ) = EP (Mτ |Fσ) (12)

Corollary 8. When Mt is an UI martingale, the stopped process Mτ
t is also an

UI martingale in the filtration (Ft).
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Proof We have seen that if (Mt) is a martingale, the stopped process Mτ
t

is a martingale, since it is the martingale transform of a bounded integrand.
Next note that since (τ(ω) ∧ t) ↑ τ as t ↑ ∞, E(M∞|Fτ ) = Mτ , and Fτ∧t ⊆

Fτ , it follows

EP (Mτ |Fτ∧t) = EP (M∞|Fτ∧t) = Mτ∧t =
(
Mt1(τ > t) +Mτ1(τ ≤ t)

)
∈ Ft

Now since Fτ∧t ⊆ Ft, we have also

EP (Mτ |Ft) = E(Mτ1(τ ≤ t)|Ft) + EP (Mτ1(τ > t)|Ft)

where on the right hand side Mτ1(τ ≤ t) ∈ Ft since Mτ ∈ Fτ .
Since F(τ∨t) ⊇ Ft, we have

EP (Mτ1(τ > t)|Ft) = EP (M(τ∨t)1(τ > t)|Ft) =
EP (M(τ∨t)|Ft)1(τ > t) = Mt1(τ > t)

So that

EP (Mτ |Ft) = Mτ1(τ ≤ t) +Mt1(τ > t) = Mt∧τ = EP (Mτ |Ft∧t)

Exercise 10. Since the stopped process can represented as a martingale trans-
form of a bounded predictable integrand one would hope that martingale trans-
forms with respect to a bounded predictable integrand preserves uniform integra-
bility, but this is not true.

In fact convergence in L1(P ) sense of martingales is tricky. Cherny has
constructed an uniformly integrable martingale (Xt : t ∈ N) and a bounded-
predictable integrand (Ht : t ∈ N), (that is |Ht(ω)| ≤ c for some constant), such
that the martingale transform (H ·X)t is a martingale which is not bounded in
L1(P ) and therefore it is not uniformly integrable

Let Xn a sequence of independent random variables, Fn = σ(X1, . . . , Xn)
and An ∈ Fn defined as follows:

an = 2n, bn =
2n

2n2 − n+ 1
, pn =

n− 1
2n2

n ∈ NX0 = X1 = 1, A1 = Ω,

An+1 = {ω : Xn+1 = a1 · · · · · an+1}
P (Xn+1 = a2 · . . . anan+1|An) = pn+1

P (Xn+1 = a2 · . . . anbn+1|An) = 1− pn+1

P (Xn+1 = Xn|Acn) = 1

Note that the process Xn stops the first time the event Acn appears, and Xn is
a martingale since

E(Xn+1|Fn) = Xn

(
1Acn + 1An

{
an+1pn+1 + bn+1(1− pn+1)

})
= Xn

For n < m

E(|Xm −Xn|) = E(|Xm −Xn|1An) = E(|Xm −Xn|1An+1) + E(|Xm −Xn|1An1Acn+1
) =
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One can check by induction that Ym,n := (Xm −Xn)1An+1 > 0 for m > n.

Yn+1,n = (Xn+1 −Xn)1An+1 = a1 . . . an(an+1 − 1)1An+1 ≥ 0,
(Xm −Xn)1An+1 = (Xm −Xm−1 +Xm−1 −Xn)1An+1 =
Ym−1,n + (Xm −Xm−1)1Am−1 =

Ym−1,n + a2 . . . am−1

(
1Am(am − 1) + 1Am−11Acm(bm − 1)

)
Now when ω ∈ Acm−1 the second term is zero and the first term is non-negative
by induction. When ω ∈ Am−1 this gives

= a2 . . . am−1

(
1 + 1(Am)(am − 1) + 1Acm(bm − 1)

)
≥ 0

Using the positivity property of Ym,n,

E(|Xm −Xn|1An+1) = E((Xm −Xn)1An+1) = E((Xn+1 −Xn)1An+1) = E(|Xn+1 −Xn|1An+1)

so that

E(|Xm −Xn|) = E(|Xm −Xn|1An+1) + E(|Xm −Xn|1An1Acn+1
) =

E((Xm −Xn)1An+1) + E(|Xn+1 −Xn|1An1Acn+1
)

= E((Xn+1 −Xn)1An+1) + E(|Xn+1 −Xn|1An1Acn+1
) by the martingale property,

= E(|Xn+1 −Xn|1An1An+1) + E(|Xn+1 −Xn|1An1Acn+1
) =

E(|Xn+1 −Xn|1An) = a2 . . . an × p2 . . . pn ×
(
(an+1 − 1)pn+1 + (1− bn+1)(1− pn+1)

)
=

a2 . . . anp2 . . . pn ×
(
1− bn+1 + (an+1 + bn+1 − 2)pn+1

)
≤ a2 . . . anp2 . . . pn(an+1pn+1 + 1) =

1
n

(
n

n+ 1
+ 1
)
≤ 2/n

therefore Xn is a Cauchy sequence and it converges in L1(P ), which means that
it is an UI martingale.

Consider now the martingale transform (H ·X)t of the bounded deterministic
integrand

Hn = 1(n is even )

For m > n,

E

(∣∣∣∣1A2n1Ac2n+1
(H ·X)2m

∣∣∣∣) = E

(
1A2n1Ac2n+1

n∑
k=1

(X2k −X2k−1)
)

≥ E
(
1A2n1Ac2n+1

(X2n −X2n−1)
)
,

since the remaining terms are non-negative on the event 1A2n1Ac2n+1
,

= p2 . . . p2n(1− p2n+1)a2 . . . a2n−1(a2n − 1) ≥ 1
4
p2 . . . p2na2 . . . a2n =

1
8n

We have

Ω = Ac1 ∪ (A1 ∩Ac2) ∪ · · · ∪ (A2m ∩Ac2m+1) ∪A2m+1
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where the union is taken over disjoint sets,

EP

(∣∣∣∣(H ·X)2m

∣∣∣∣) ≥ m∑
n=1

EP

(
1A2n1Ac2n+1

∣∣∣∣(H ·X)2m

∣∣∣∣) ≥ m∑
n=1

1
8n
→∞

as m→∞, the martingale (H ·X)n is not bounded in L1(P ).

Corollary 9. Let (Xt : t ∈ N) an UI submartingale with Doob decomposition

Xt = X0 +Mt +At

where Mt is a martingale and At is a predictable non-decreasing process with
M0 = A0 = 0.

Then

1. (Mt) is an UI-martingale and EP (A∞) <∞.

2. For every stopping time τ

E(X∞|Fτ )(ω) ≥ Xτ (ω)

Proof By Doob forward martingale convergence theorem

∃X∞ = lim
t→∞

Xt(ω)

P -almost surely and in L1(P ) sense. By monotonicity At(ω) → A∞(ω) P -a.s.
Since E(Mt) = 0∀t ∈ N, by the bounded convergence theorem

E(A∞) = lim
n→∞

E(Xt −X0) = EP (X∞)− EP (X0)

which means that At → A∞ also in L1(P ) sense.
Therefore

Mt →M∞ = X∞ −X0 −A∞
P -a.s. and in L1(P ).

For a stopping time τ , we have since Mt is an UI-martingale

EP (X∞|Fτ ) = X0+EP (M∞|Fτ )+EP (A∞|Fτ ) = X0+Mτ+Aτ+EP (A∞−Aτ |Fτ )

where the last term on the right hand side is non-negative �

Lemma 8. Let (Xt(ω) : t ∈ N) be a non-negative martingale. Since it is
non-negative is automatically bounded in L1 and by Doob convergence theorem
exists limt→∞Xt(ω) = X∞(ω) P almost surely with X∞ ∈ L1(P ). Then Xt is
uniformly integrable if and only if E(X∞) = E(X0)

Proof
Necessity follows from the characterization of L1-convergence. For suffi-

ciency, by Fatou lemma for A ∈ Ft
EP (X∞1A) ≤ lim inf

T→∞
E(XT1A) = E(Xt1A)

which gives the supermartingale property at T =∞:

EP (X∞|Ft) ≤ Xt

Now by assumption

0 = EP (Xt −X∞) = EP
(
Xt − EP (X∞|Ft)

)
which means Xt = EP (X∞|Ft) P almost surely �
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10 Martingale maximal inequalities
For a process (Xt : t ∈ T ), T = R or N we define the running maximum

X∗t = max
0≤s≤t

Xs(ω)

Theorem 10. Let (Xs : s = 1, . . . , T ) a {Ft}-submartingale with Xt(ω) ≥ 0 P
a.s. ∀t.Then for c > 0

cP
(
X∗T ≥ c

)
≤ EP

(
XT1(X∗T > c)

)
≤ EP

(
XT

)
Proof Let A := {ω : X∗T (ω) ≥ c} and

At :=
{
ω : X1(ω) < c, . . . ,Xt−1(ω) < c,Xt(ω) ≥ c

}
A =

⋃T
t=1At with At ∩As = ∅ for s 6= t.

By the submartingale property

EP (XT1A) =
T∑
s=1

EP (XT1As) ≥

T∑
s=1

EP (Xs1As) ≥ c
T∑
s=1

P (As) = cP (A)

Lemma 9. Let X(ω) ≥ 0, Y (ω) ≥ 0 random variables with Y ∈ Lp(Ω,F , P ) ,
p > 1 for which

cP (X > c) ≤ EP (Y 1(X > c)), c > 0

then

‖ X ‖p≤ q ‖ Y ‖p with
1
p

+
1
q

= 1

Proof Assume first that X ∈ Lp.By using Fubini’s theorem

EP (Xp) =
∫

Ω

(∫ X(ω)

0

ptp−1dt

)
P (dω) =

∫ ∞
0

P (X ≥ t)ptp−1dt ≤

p

p− 1

∫ ∞
0

tP (X ≥ t)(p− 1)tp−2dt ≤ q
∫ ∞

0

EP
(
Y 1(X ≥ t)

)
(p− 1)tp−2dt ≤

qEP

(
Y

∫ X(ω)

0

(p− 1)tp−2dt

)
= qEP (Y Xp−1)

( Hölder ) ≤ qEP (Y p)1/pEP (Xq(p−1))1/q = q ‖ Y ‖p‖ X ‖p

which gives

‖ X ‖p(1−1/q)
p =‖ X ‖p≤ q ‖ Y ‖p

Without assuming that X ∈ Lp, take the truncated r.v.

X(n)(ω) := X(ω) ∧ n ↑ X(ω) as n ↑ ∞

Note that {ω : X(ω) ∧ n ≥ c} = ∅ for n < c,
and for n ≥ c, {ω : X(ω) ∧ n ≥ c} = {ω : X(ω) ≥ c} and the assumption of

this lemma holds forX(n)(ω). The result follows from the monotone convergence
theorem as n ↑ ∞ �
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Theorem 11. (Doob’s Lp maximal inequality) Let (Mt : t = 1 . . . , T ) a mar-
tingale with Mt ∈ Lp ∀t. Then for 1 < p <∞

‖M∗T ‖p≤ q ‖MT ‖p

Proof |Mt| is a submartingale, by the maximal inequality

cP
(
|M∗T | > c

)
≤ EP

(
|MT |1(|M∗T | > c)

)
and we to apply the previous result with X = |M∗T | and Y = |MT |.

Corollary 10. When (Mt : t ∈ N) is a martingale in L2(P ), we obtain

EP
(
(M∗T )2

)
≤ 4EP

(
M2
T

)
= 4
{
EP (M2

0 ) + EP
(
〈M,M〉

)}
Theorem 12. (Kakutani) On a probability space (Ω,F , P ) let (Xt : t ∈ N)
P -independent random variables with Xt(ω) ≥ 0 and EP (Xt) = 1.

Let Ft = σ(X1, . . . , Xt) and

Mt = X1X2 . . . Xt, at =
{
E(
√
Xt)
}
∈ (0, 1]

Mt is a non-negative (Ft)-martingale with E(Mt) = 1 and by Doob forward
convergence theorem it has P almost surely a limit M∞(ω) as t → ∞, with
M∞ ∈ L1(P ).

The following statements are equivalent:

1. Mt is uniformly integrable

2. EP (M∞) = 1

3.
∞∏
t=1

at > 0

4.
∑∞
t=1(1− at) <∞

Otherwise M∞(ω) = 0 P a.s.

Proof 1) =⇒ 2) by the characterization of L1(P ) convergence.
2) =⇒ 1): since Mt ≥ 0 we can use Fatou’s lemma: ∀A ∈ Fs

EP
(
M∞1A

)
= EP

(
lim inf
t→∞

Mt1A
)

≤ lim inf
t→∞

EP
(
Mt1A

)
= EP

(
Ms1A

)
where we used the martingale property. This is the supermartingale property
at t =∞:

Ms(ω) ≥ EP (M∞|Fs)(ω) P a.s.

By assumption

EP

(
Ms − EP (M∞|Fs)

)
= EP (Ms)− EP (M∞) = 0
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which implies that (Ms) is an UI martingale:

Ms(ω) = EP (M∞|Fs)(ω) P a.s.

1) =⇒ 2): Define

Nt(ω) =

√
Mt(ω)

a1a2 . . . at

(Nt) is a martingale in L2(P ).
By Doob Lp martingale inequality with p = 2,

EP

(
sup
s≤t

Ms

)
≤ EP

(
sup
s≤t

N2
s

)
≤ 4E(N2

t ) =
4

a2
1 . . . a

2
t

and by the monotone convergence theorem

EP

(
sup
s∈N

Ms

)
= lim
t→∞

EP

(
sup
s≤t

Ms

)
≤ 4

∏
t∈N

a−2
t

Now if
∏
t∈N

at > 0, this gives a finite upper bound, and necessarly (Mt) is an

UI martingale since it is dominated by
(
sups∈N Ms

)
∈ L1(P ).

In case
∏
t∈N

at = 0, by Fatou lemma

EP
(√

M∞
)

= EP
(
lim inf

t

√
Mt

)
≤ lim inf

t
EP
(√

Mt

)
= lim

t
a1a2 . . . at = 0

which implies M∞ = 0 P a.s.
3) =⇒ 4): On another probability space, take a sequence (Yn : n ∈ N) of

independent Bernoulli random variables with

P (Yn = 1) = 1− P (Yn = 0) = an ∈ (0, 1]

Let Bn = {ω : Yn(ω) = 1} , and B =
⋂
n∈N

Bn.

Using σ-additivity,

P (B) =
∏
n∈N

P (Bn) =
∏
n∈N

an

Note that since P (Bn) = an > 0 ∀n,

P (B) = 0⇐⇒ P (lim inf
n

Bn) = 0⇐⇒ P (lim sup
n

Bcn) = 1

By the first and second Borel Cantelli lemma for independent events this is
equivalent to

∞ =
∞∑
n=1

P (Bcn) =
∞∑
n=1

(1− an) �
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As an application we appply Kakutani theorem to the likelihood ratio pro-
cess.

On a probability space (Ω,F) consider a sequence of random variables (Xn(ω) :
n ∈ N) which generate the filtration (Fn), Fn = σ(X1, . . . , Xn).

We consider two probability measures P and Q such that the random vari-
ables (Xn(ω)) form an independent sequence under both measures P and Q.

Q
loc
� P ( P dominates Q locally ), which means that for all n and for all

An ∈ Fn, P (An) = 0 =⇒ Q(An) = 0.
By the Radon-Nikodym theorem, for each n ∈ N there is an Fn-measurable

Radon-Nikodym derivative

0 ≤ Zn(ω) =
dQn
dPn

(ω) such that Q(A) = EP
(
Zn1An

)
∀A ∈ Fn

where Qn and Pn are the restrictions of Q and P on the σ-algebra Fn.
Now Zn(ω) is a martigale, since if A ∈ Fm then A ∈ Fn ∀m ≥ n and by

using twice the change of measure formula

EP
(
Zm1A

)
= Q(A) = EP

(
Zn1A

)
Let’s assume that Xn(ω) ∈ Rd with densities Q(Xn ∈ dx) = gn(x)dx and

P (Xn ∈ dx) = fn(x)dx.
By assumption outside a set of Lebesgue measure 0, gn(x) = 0 when fn(x) =

0. In particular the function

zn(x) =
gn(x)
fn(x)

is well defined outside a set of Lebesgue measure 0.
It follows that

Zn(ω) = z1(X1(ω))z2(X2(ω)) . . . zn(Xn(ω))

By Kakutani’s theorem Zn is UI martingale if and only if

∞∏
n=1

EP
(√

zn(Xn)
)
> 0

⇐⇒
∞∑
n=1

(
1− EP

(√
zn(Xn)

))
<∞

Exercise 11. Let Xn i.i.d. standard gaussian with EP (Xn) = 0 and EP (X2
n) =

1 under the measure P and let Xn ∼ N (µn, 1) and independent under the
measure Q.

In this case

zn(x) =
(2π)−1/2 exp

(
− 1

2 (x− µn)2

)
(2π)−1/2 exp

(
− 1

2x
2

) = exp
(
xµn −

1
2
µ2
n

)
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Then P ∼ Q on the σ-algebra F∞ if and only if

0 <
∞∏
n=1

EP

(√
exp
(
xµn −

1
2
µ2
n

))
=
∞∏
n=1

EP

(
exp
(

1
2
xµn −

1
4
µ2
n

))

=
∞∏
n=1

exp
(
−1

8
µ2
n

)
= exp

(
−1

8

∞∑
n=1

µ2
n

)
which is equivalent to

∞∑
n=1

µ2
n <∞

In fact, if µn = µ 6= 0 ∀µ, then P and Q are singular on F∞.
For example by the law of large numbers the set

A =
{
ω : lim

n→∞
n−1(X1(ω) + · · ·+Xn(ω)) = µ

}
has Q(A) = 1 and P (A) = 0

Exercise 12. Suppose now that under P the random variables (Xn) are i.i.d.
Poisson(1) distributed, while under Q (Xn) are independent with respective dis-
tributions Poisson(λn) with λn > 0.

In this case

zn(x) =
(

exp(−λn)λxn/n!
)/(

exp(−1)/n!
)

= exp
(
x log(λn) + 1− λn

)
,

EP
(√

zn(Xn)
)

= exp
(

1
2

(1− λn)
)
EP

(√
λn

Xn
)

=

exp
(√

λn − 1 +
1
2

(1− λn)
)

= exp
(
−1

2
(
√
λn − 1)2

)
since for a Poisson(1) distributed random variable X, EP

(
θX
)

= exp(θ − 1).
Therefore Q ∼ P on F∞ if and only if

0 <
∞∏
n=1

exp
(
−1

2
(
√
λn − 1)2

)
= exp

(
−1

2

∞∑
n=1

(
√
λn − 1)2

)

⇐⇒
∞∑
n=1

(
√
λn − 1)2 <∞

11 Continuous time
Moving from discrete time to continuous part, we need some technical assump-
tions.

We will work with the filtration (Ft : t ∈ R+) on the probability space
(Ω,F , P ).

We say that the filtration (Ft) satisfies the usual conditions if

1. The filtration is completed by the P -null sets

F0 ⊇ NP := {A ⊆ Ω : P (A) = 0}
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2. The filtration is right-continuous

∀t ≥ 0 Ft = Ft+ :=
⋂
u>t

Fu

Next we discuss why these usual assumptions are needed.

Lemma 10. Let τ(ω) ≥ 0 be a random time and (Ft : t ≥ 0) a filtration which
in general is smaller than the filtration (Ft+ : t ≥ 0).

1. τ(ω) is a stopping time with respect to the filtration (Ft+) if and only if
{τ < t} ∈ Ft ∀t ≥ 0.

2. When the filtration is right continuous τ is also a (Ft)-stopping time.

Proof When τ is a (Ft+)-stopping time

{ω : τ(ω) < t} =
⋃
n∈N
{ω : τ(ω) ≤ t− n−1} ∈ Ft

since {τ(ω) ≤ t− n−1} ∈ Ft−1/n by definition of stopping time.
On the other hand, from the assumption

{ω : τ(ω) ≤ t} =
⋂
n∈N
{ω : τ(ω) < t+ n−1} ∈ Ft+ �

Exercise 13. We show a filtration which is not right-continuous, generated by
a continuous process. Consider the probability space of continuous functions
started at zero

Ω =
{
ω ∈ C(R+,R) : ω0 = 0

}
equipped with the Borel σ-algebra, where the canonical process is Xt(ω) = ωt,
Let (F0

t ) be the “raw” filtraton generated by X, with F0
t = σ(ωs : s ≤ t).

Note that A ∈ F0
t if and only if for all ω, ω̂ ∈ Ω, with ωs = ω̂s ∀s ∈ [0, t],

ω ∈ A⇐⇒ ω̂ ∈ A

meaning that A depends only on the path ω restricted to the interval [0, t].
For a > 0, consider first the random time

τ(ω) = inf
{
t > 0 : ωt ≥ a

}
Now ∀t > 0,

{ω : τ(ω) ≤ t} = {ω : inf
q≤t,q∈Q+

(a− ωq)+ = 0}

now since (a−ωq)+ is F0
q measurable by taking the infimum over the countable

set [0, t] ∩Q, we see that this event is F0
t measurable.

Next we construct a random time which is a (F0
t+)-stopping time but not a

(F0
t )-stopping time. This shows that the raw filtration (F0

t ) is not right contin-
uous, even if it is generated by a continuous process. Let

τ̃(ω) = inf
{
t > 0 : ωt > a

}
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For each t > 0,

{ω : τ̃(ω) < t} =
⋃

q∈Q+,q<t

{ω : ωq > a} ∈ Ft

meaning that τ̃ is a (F0
t+) stopping time.

However τ̃ is not a (F0
t )-stopping time. For fixed t, consider a set of paths

which are crossing the level a for the first time at time t:

At = {ω : τ̃(ω) = t}
=
{
ω : ωq < a;∀q < t, ωt = a, ∃N : ωt+1/n > a ∀n > N

}
For ω ∈ At, consider the reflected path ω̂

ω̂s =
{
ωs s ∈ [0, t]
2a− ωs s > t

Now by construction when ω ∈ At, τ(ω̂) > τ(ω) = t, since by construction ω̂
attains the local maxima a at time t, and may cross the level a only later.

Which means, the event {τ̃ ≤ t} is F0
t+ measurable but not F0

t measurable:
by observing the paths on the interval [0, t] we cannot distinguish between ω ∈ At
and the corresponding ω̂. For that we need to observe a little bit of the future,
that is the extra information contained in F0

t+

Things may change when we complete the filtration with respect to a prob-
ability measure: Let PW the Brownian measure on Ω, such that the canonical
process Xt(ω) = ωt is a Brownian motion, and let (Ft) the filtration completed
by the PW -null events.

In the previous example it is not difficult to show that for each fixed t >
0 PW (At) = 0, meaning that the probability that the Brownian motion will
cross the level a for the first time at the pre-specified time t is zero, and by
reflection this is equal to the probability that the Brownian motion attains the
local maximum a at time t. Therefore

{τ̃ ≤ t} = {τ̃ < t} ∩ {τ̃ = t} ∈ σ(F0
t ,NP ) = Ft

τ̃ is a stopping time with respect to the PW -completed filtration (Ft).

We have seen that continuous process can generate filtrations which are not
right continuous. On the other hand, the discontinuous raw filtration generated
by a process with jumps may become continuous after completing with the
P -null sets.

Proposition 7. The completed filtration generated by a time-homogeneous pro-
cess with independent increments is right continuous.

Proof We give for the case of Brownian motion, but you can check that
it goes through also for the Poisson process, (the same proof works for Lévy
processes which we have not introduced yet).

Let Ft the completed Brownian filtration.
Fix m,n ∈ N, 0 = u0 < u1 < · · · < um = s0 ≤ t < s1 < · · · < sn and

ηh, θk ∈ R. We compute the conditional characteristic functions. Let

G(ω) = exp
(
iη1(Bu1−Bu0)+· · ·+iηm(Bum−Bum−1)+iθ1(Bs1−Bs0)+· · ·+θn(Bsn−Bsn−1)

)
,
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where i =
√
−1. By using the independence of the increments,

Mt := EP (G|Ft) =

= exp
(
iη1(Bu1 −Bu0) + · · ·+ iηm(Bum −Bum−1) + iθ1(Bt −Bum)

)
×

× exp
(
−1

2

{
θ2

1(s1 − t) +
n∑
k=2

θ2
k(sk − sk−1)

)
We see that the map t 7→Mt(ω) is right-continuous since Bt has right-continuous
paths. By the martingale backward convergence theorem, P -almost surely

E(G|Ft+) = Mt+ = lim
u↓t

Mu = Mt = E(G|Ft)

By using the regular version of the conditional probabilty, since the character-
istic function characterizes the conditional probability we see that

E(G|Ft+) = E(G|Ft)

for all bounded random variables G(ω). in particular taking G = 1A with
A ∈ Ft+ it follows there is an Ft-measurable set A′ such that A and A′ differ
at most by a set of measure zero. Since Ft contains the null sets, A is Ft-
measurable �

Lemma 11. Let D+ = {k2−n : k, n ∈ N} be the dyadic set.
Let (Mu)u∈D+ be a right-continuous martingale in the filtration (Fu)u∈D+

satisfying the usual conditions.
For t ∈ R+ define

Mt(ω) := lim sup
u↓t,u∈D+

Mu(ω) and Ft =
⋂

u>t,u∈D+

Fu

Then (Mt)t∈R+ be a right-continuous martingale in the filtration (Ft)t∈R+

which satisfies the usual conditions.

Proof Let t ∈ R+ That (Ft)t∈R+ is right continuous follows from the defi-
nition. Also we see that lim supu↓t,u∈DMu is Ft-measurable.

Let un ∈ D+ with un ↓ t, and consider the time-discrete backward filtration
F̂−n = Fun . By definition

Ft = F̂−∞ =
⋂
n

Fun

The process (Mun : n ∈ N) is a backward martingale, and by Doob backward
convergence theorem (6)

Mt(ω) = lim
n→∞

Mun P -almost surely and in L1(P )

In particular it follows that Mt ∈ L1(P ).

To check the martingale property, let s, t ∈ R with s ≤ t, A ∈ Fs, and let
rn ∈ D+ with rn ↓ s and un ∈ D+ with un ↓ t. Since s ≤ t we can choose
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sequences such that rn ≤ un. Note that A ∈ Frn ⊇ Fs ∀n.

SinceMun(ω)→Mt(ω) andMrn(ω)→Ms(ω) P -almost surely and in L1(P )

EP
(
Mt1A) = lim

n→∞
EP (Mun1A) = lim

n→∞
EP (Mrn1A) = EP

(
Ms1A)

where we used the martingale property of (Mu)u∈D+ ; �.

12 Localization
Definition 22. We say that a property holds locally with respect to the filtration
(Ft) for the process (Xt(ω)), if there is a localizing sequence of (Ft)-stopping
times τn(ω) ↑ ∞ such that for each n the stopped process Xτn

t (ω) := Xt∧τn(ω)
satisfyies that property.

For example every (Ft)-adapted process (Xt : t ∈ R+) with continuous paths
is locally bounded: as localizing sequence we can take

τn(ω) := inf
{
t : |Xt(ω)| > n

}
which gives |Xt∧τn(ω)| ≤ n.

13 Doob decomposition in continuous time
We recall that the (total) variation of a function s 7→ x(s) in the interval [0, t]
is given by

V[0,t](x) := sup
Π

∑
ti∈Π

|x(ti)− x(ti−1)|

where the supremum is taken over partitions Π = (0 = t0 ≤ t1 ≤ . . . ,≤ tn = t)
of the interval [0, t]. It follows that x(s) has finite first variation if and only if
x(s) = x(0) + x⊕(s)− x	(s) with x⊕, x	 non-decreasing functions.

Lemma 12. A continuous local martingale (Mt) with almost surely finite (total)
variation is necessarly constant.

Proof Without loss of generality we assume thatM0(ω) = 0. Let τn(ω) ↑ ∞
a localizing sequence of stopping times such that for each n the stopped process
Mt∧τn is a martingale. We define stopping times

σn = τn ∧ inf{t : V[0,t](X(ω)) > n} ≤ τn

By Doob optional sampling theorem, the stopped process Mσn
t (ω) is a martin-

gale with
|Mσn

t | ≤ V[0,t](Mσn) ≤ n ∀t ≥ 0

Since σn(ω)→∞, it is a localizing sequence. In order to simplify the notation,
let’s fix n and assume that Mt(ω) := Mσn

t (ω) is a true martingale, which has
bounded first variation. By the discrete integration by parts formula, for a
sequence (0 = t0 ≤ t1 ≤ t2 ≤ . . . ), with tn →∞. We have

M(t)2 = 2
∞∑
i=1

M(ti−1 ∧ t)(M(ti ∧ t)−M(ti−1 ∧ t))+
∞∑
i=1

(M(ti ∧ t)−M(ti−1 ∧ t))2
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Since s 7→Ms(ω) is uniformly continuous on [0, t], there is a random δ(ω) such
that∑
i

(Mti∧t−Mti−1∧t)
2 ≤ sup

i
|Mti∧t−Mti−1∧t|

∑
i

|Mti∧t−Mti−1∧t| ≤ εV[0,t](M) ≤ εn

when ∆(Π) = supi
{

(ti ∧ t)− (ti−1 ∧ t)
}
< δ(ω). This means∑

i

(Mti∧t −Mti−1∧t)
2 → 0 P -almost surely

as ∆(Π)→ 0, and we have

M2
t = lim

∆(Π)→0
2
∞∑
i=1

Mti−1∧t(Mti∧t−Mti−1∧t) := 2
∫ t

0

MsdMs P -almost surely

where for almost every ω the limit of Riemann-sums is a Riemann-Stieltjes
integral. Note also that the sum containes a fixed number of nonzero terms. By
taking expectation,

EP (M2
t ) = 2EP

(
lim

∆(Π)→0

∞∑
i=1

Mti−1∧t(Mti∧t −Mti−1∧t)
)

= 2 lim
∆(Π)→0

2EP

( ∞∑
i=1

Mti−1∧t(Mti∧t −Mti−1∧t)
)

=

lim
∆(Π)→0

2
∞∑
i=1

EP

(
Mti−1∧tEP (Mti∧t −Mti−1∧t|Fti−1∧t

))
= 0

where we used the martingale property, which gives Mt(ω) = M0(ω) = 0 ∀t.
The interchange of limit and expectation is justified by the bounded convergence
theorem, since Mt(ω) has bounded variation.∣∣∣∣ ∞∑
i=1

Mti−1∧t(Mti∧t −Mti−1∧t)
∣∣∣∣ ≤ V[0,t](M(ω))2 ≤ n2 P -almost surely .

Coming back to the local martingale, we have

Mt(ω) = lim
n→∞

Mt∧σn(ω) = 0 P -almost surely �

The next two technical lemma are not very intuitive but useful:

Lemma 13. Suppose (An : n ∈ N) is a (Fn)-predictable and non-decreasing
process with A0 = 0, such that

EP (A∞ −An|Fn)(ω) ≤ C ∀n

Then EP (A2
∞) ≤ 2C2.
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Proof

(An)2 =
n∑
k=1

n∑
h=1

∆Ak∆Ak = 2
n∑
k=1

n∑
h=k

∆Ah∆Ak −
n∑
k=1

(∆Ak)2

= 2
n∑
k=1

(An −Ak−1)∆Ak −
n∑
k=1

(∆Ak)2

where ∆Ak = (Ak − Ak−1), and since the terms (An)2 and
n∑
k=1

(∆Ak)2 are

non-negative and non-decreasing, the monotone convergence theorem applies

EP (A2
∞) = 2E

( ∞∑
k=0

(An −Ak−1)∆Ak

)
− EP

( ∞∑
k=1

(∆Ak)2

)
where we can exchange the order of summation and integration. By taking
conditional expectation inside and using predictability,

EP (A2
∞) ≤ 2

∞∑
k=0

EP

(
EP
(
(A∞ −Ak−1)∆Ak

∣∣Fk−1

))

= 2
∞∑
k=0

EP

(
E(A∞ −Ak−1|Fk−1)∆Ak

)
≤ 2CEP

( ∞∑
k=1

∆Ak

)
= 2CEP (A∞) ≤ 2C2

Lemma 14. Suppose A(1)
n and A(2)

n are two predictable processes satisfying the
hypothesis of lemma 13 and Bn = (A(1)

n − A(2)
n ). Suppose that there is a r.v.

Y (ω) ≥ 0 with EP (Y 2) <∞ and∣∣EP (B∞ −Bn|Fn)(ω)
∣∣ ≤ Nn(ω) := EP (Y |Fn)(ω) ∀n .

Then there exists c such that

EP

(
sup
n∈N

B2
n

)
≤ c
(
EP (Y 2) + CE(Y 2)1/2

)
Proof We shall need the following estimate: since

|∆Bk| = |∆A(1)
k −∆A(2)

k | ≤ ∆A(1)
k + ∆A(2)

k ,

it follows

EP (B2
∞) = 2E

( ∞∑
k=0

E(Bn −Bk−1|Fk)∆Bk)− EP
( ∞∑
k=1

(∆Bk)2

)
≤ 2EP

(
(A(1)
∞ +A(2)

∞ )Y
)

≤ 2EP
(
Y 2
)1/2(

EP
(
{A(1)
∞ }2

)1/2 + EP
(
{A(2)
∞ }2

)1/2) ≤ 25/2CEP (Y 2)

where we used Hölder and Cauchy-Schwartz inequalities together with lemma
13.

Let Mn := EP (B∞|Fn), Xn := Mn − Bn, and Nn = EP (Y |Fn) from the
triangle inequality

EP

(
sup
n
B2
n

)1/2

≤ EP
(

sup
n
X2
n

)1/2

+ EP

(
sup
n
M2
n

)1/2
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Note that

|Xn| =
∣∣EP (B∞ −Bn|Fn)

∣∣ ≤ E(Y |Fn) = Nn

Since (Mn) and (Nn) are martingales bounded in L2(P ) we can use Doob
Lp-martingale inequality

EP

(
sup
n
B2
n

)1/2

≤ EP
(

sup
n
N2
n

)1/2

+ 2EP

(
M2
∞

)1/2

≤ 2EP (Y 2)1/2 + 2EP (B2
∞) ≤ 2EP (Y 2)1/2 + 27/2CEP (Y 2) �

Theorem 13. Suppose (Xt : t ∈ R+) is a (Ft)-supermartingale with continuous
paths. Then we have the Doob-Meyer decomposition

Xt(ω) = X0(ω) +Mt(ω)−At(ω)

where M0(ω) = A0(ω) = 0, Mt is a continuous (Ft)-local martingale and
At is continuous and non-decreasing. Moreover (Mt) and (At) are uniquely
determined up to indistinguishable processes.

Remark : this result can be extended to processes with jumps.
Proof, Uniqueness: Suppose that we have two Doob-Meyer decomposi-

tions
Xt −X0 = Mt −At = M̃t − Ãt

It follows that
St := (Mt − M̃t) = (At − Ãt)

is a continuous local martingale with paths of finite variation, and by lemma 12
necessarily St(ω) = S0(ω) = 0 ∀t P -almost surely.

Existence : by considering the stopped process XτC
t = Xt∧τC , where

τC(ω) = inf
{
s : |Xs(ω)| > C or s > C

}
we reduce first the problem to the case where X is a bounded and uniformly
continuous process, which is constant on the interval [C,∞). Without loss of
generality we assume that X0(ω) = 0.

Fix k and m ∈ N, and consider Fmk = Fk2−m , k ∈ N.
Construct for each m ∈ N the discrete time Doob decomposition

Xk2−m(ω) = M
(m)
k +A

(m)
k

Define for each m the continuous time filtration

F (m)

t (ω) = Fk2−m(ω) when (k − 1)2−m < t ≤ k2−m

and the continuous time process

A
(m)

t (ω) = A
(m)
k (ω) when (k − 1)2−m < t ≤ k2−m .

Note that for each m, A
(m)

t is (Ft)-adapted, since in the time-discrete Doob
decomposition A(m)

k (ω) is F(k−1)2−m-measurable.
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Consider the modulus of continuity

W (δ, ω) := sup
s≤K,|s−t|≤δ

|Xt(ω)−Xs(ω)|

W (δ) is a bounded random variable since Xt(ω) is bounded, and because
Xt(ω) has uniformly continuous paths W (δ)→ 0 P -almost surely as δ → 0. By
the bounded convergence theorem W (δ)→ 0 in L2(P ) sense.

We show that A
(m)

t converges in L2(P ) uniformly in t as m→∞.
For m > n, A

(m)

t and A
(n)

t are constant on the intervals
(
(k−1)2−m, k2−m

]
,

we have
sup
t

∣∣A(m)

t −A(n)

t

∣∣ = sup
k∈N

∣∣A(m)

k2−m −A
(n)

k2−m

∣∣
Fix t = k2−m for some k. and let (l − 1)2−n < t ≤ l2−n. Denote u = l2−n. By
the discrete time Doob decomposition

EP (A
(m)

∞ −A
(m)

t |F (m)

t )(ω) = EP (A(m)
∞ −A

(m)
k |Fk2−m)(ω) = EP (Xt−X∞|Fk2−m)(ω)

On the other hand

EP (A
(n)

∞ −A
(n)

t |F
(m)

t )(ω) = EP (A(n)
∞ −A

(n)
l |Ft)(ω) = EP

(
EP (A(n)

∞ −A
(n)
l |Fu)

∣∣∣∣Ft)(ω) =

EP

(
EP (Xu −X∞|Fu)

∣∣∣∣Ft)(ω) = EP
(
Xu −X∞

∣∣Ft)(ω)

Then the difference of conditional expectations is bounded:∣∣∣∣EP (A
(m)

∞ −A(m)

t |Ft)− EP (A
(n)

∞ −A
(n)

t |Ft)
∣∣∣∣

≤ EP
(
|Xt −Xu|

∣∣Ft) ≤ EP (W (2−n)
∣∣Ft)

The assumptions of lemma 14 are satisfied, giving

EP

(
sup
t

(
A

(m)

t −A(n)

t

)2) ≤ c{EP (W (2−n)2
)
+2CEP

(
W (2−n)2

)1/2}→ 0 as n,m→∞, m > n

It can be shown that the space of processes

S2 :=
{
Z(t, ω) (Ft)-adapted process with ‖ Z ‖2S2 := EP

(
sup
t
Z2
t

)
<∞

}
is complete under the ‖ · ‖S2 norm. There is a process At(ω) ∈ S2 such that

EP

(
sup
t

{
A

(n)
t −At

}2
)
→ 0

From convergence in quadratic mean it follows that there is a subsequence (ni)
such that

sup
t
|A(ni)
t (ω)−At(ω)| → 0 P -almost surely .
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Next we show that At(ω) is continuous.

∆A
n

t = EP

(
X(k−1)2n −X(k)2n

∣∣∣∣F(k−1)2−n

)
≤ EP

(
W (2−n)

∣∣F(k−1)2−n
)

where on the right hand side we have an uniformly integrable martingale. We
have

EP

(
sup
t

(∆A
n

t )2

)
≤ EP

(
sup
k
EP
(
W (2−n)

∣∣F(k−1)2−n
)2) ≤ 4EP

(
W (2−n)2

)
→ 0 as n→∞

by Doob Lp-martingale inequality. In particular there is a further subsequence
(nj) such that

sup
t

∆A
nj
t (ω)→ 0 P - almost surely as j →∞

Almost sure continuity follows:

sup
t
|∆At(ω)| ≤ sup

t
|∆At(ω)−∆A(nj)

t (ω)|+ sup
t
|∆A(nj)

t (ω)|

≤ 2 sup
t
|At(ω)−A(nj)

t (ω)|+ sup
t
|∆A(nj)

t (ω)|

which for almost all ω is arbitrary small for j large enough.

We show that Mt := (Xt +At) is a (Ft)-martingale. Since Mt is continuous
and square integrable since Xt(ω) and At(ω) are.

By using lemma 11 it is enough to show the martingale property for s < t
with s, t ∈ Dn = {k2−n : k ∈ Z}, n ∈ N, and B ∈ Fs:

EP
(
Mt1B

)
= EP

(
Ms1B

)
⇐⇒ EP

(
(Xt +At)1B

)
= EP

(
(Xs +As)1B

)
⇐⇒ EP

(
(Xt +A

(n)

t )1B
)
− EP

(
(Xs +A

(n)

s )1B
)

=

= EP
(
(A

(n)

t −At)1B)− EP
(
(A

(n)

s −As)1B)

where we can choose n and in the last equation the left hand side is zero by the
discrete time martingale property

By the Cauchy Schwartz inequality,

∣∣∣∣EP ((A(n)

t −At)1B
)∣∣∣∣ ≤ EP(sup

t
(A

(n)

t −At)2

)1/2√
P (B) −→ 0.

For the general case, by using the localization

Xt = lim
C→∞

XτC
t (ω) = X0 + lim

C→∞
M

(C)
t (ω)− lim

C→∞
A

(C)
t (ω) = X0 +Mt −At

whereM (C)
t are continuous true martingales and A(C)

t are continuous increasing
processes with M (C)

0 (ω) = A
(C)
0 (ω) = 0 and

M
(C)
t (ω) = M

(C+1)
t (ω) and A(C)

t (ω) = A
(C+1)
t (ω) on [0, τC ]
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This implies that the limits Mt(ω) and At(ω) exist with M
(C)
t = Mt∧τC and

A
(C)
t = At∧τC . Therefore At is continuous and non-decreasing and Mt is a local

martingale with localizing sequence (τC : C ∈ N).

Note that without additional assumptions, it is not possible to show that
Mt is a true martingale, since for t > s and B ∈ Fs, we would like to have

. EP
(
(Mt −Ms)1B

)
= EP

(
lim
C→∞

(Mt∧τC −Ms∧τC )1B
)

(13)

?= lim
C→∞

EP
(
(Mt∧τC −Ms∧τC )1B

)
= 0 (14)

however the interchange of limit and expectation is not always justified �

Definition 23. 1. We say that a right continuous (Ft)-adapted process (Xt(ω))
is in the class DL if for each t > 0 the family of random variables{

Xτ (ω) : τ is a stopping time with τ(ω) ≤ t a.s.
}

is uniformly integrable,

2. the right continuous adapted process (Xt(ω)) is in the class D is the family
of random variables{

Xτ (ω) : τ is a stopping time
}

is uniformly integrable.

Exercise 14. 1. A local martingale Mt of class DL is a true martingale.

2. A local martingale Mt of class D is an uniformly integrable martingale.

Proof

1. Let (τn) be a localizing sequence. For 0 ≤ s ≤ t, B ∈ Fs we have

EP
(
(Mt −Ms)1B

)
= EP

(
lim
n→∞

(Mt∧τn −Ms∧τn)1B
)

= lim
n→∞

EP
(
(Mt∧τn −Ms∧τn)1B

)
= 0

where the last step is justified since the family {|Mt∧τn −Ms∧τn | : n ∈ N}
is uniformly integrable by assumption.

2. Mt is a martingale by the previous step, and it is clear thatMt is uniformly
integrable since determistic times are stopping times.

Corollary 11. A continuous (Ft)-supermartingale of class DL has unique
Doob-Meyer decomposition

Xt(ω) = X0(ω) +Mt(ω)−At(ω)

where M0(ω) = A0(ω) = 0, Mt is a continuous true (Ft)-martingale and At is
continuous and non-decreasing.

Moreover if Xt is of class D, the martingale Mt is uniformly integrable and
At is integrable.

50



Proof When Xt is of class DL, for t and B ∈ Ft, by the characterization of
convergence in L1(P ) we have

EP
(
|Xt −Xt∧τC |)→ 0 as C →∞

Since A is non-decreasing by the monotone convergence theorem

EP
(
At −At∧τC )→ 0 as C →∞

Therefore

‖Mt −Mt∧τC ‖L1(P )≤‖ Xt −Xt∧τC ‖L1(P ) + ‖ At −At∧τC ‖L1(P )→ 0

which justifies the interchange of limit and expectation in equation 13.
When Xt is of class D it is uniformly integrable, therefore Xt → X∞ almost

surely and in L1(P ) by the Doob martingale convergence theorem, and by the
martingale property

EP (A∞) = lim
t↑∞

EP (At) = lim
t↑∞

EP (Xt −X0) = EP (X∞ −X0) <∞,

which means that

Mt = (Xt −X0 −At)→M∞ = (X∞ −X0 −A∞)

P -almost surely and in L1(P ) sense. In particular Mt is uniformly integrable.
�.

14 Quadratic and predictable variation of a con-
tinuous local martingale

Let Mt be a continuous local martingale in the (Ft)-filtration, and (τn) a local-
izing sequence. Note that we can choose (τn) such that |Mτn

t (ω)| ≤ n.
By Jensen inequality, the stopped process (Mτn

t )2 is a (Ft)-submartingale,
with Doob decomposition

(Mτn
t )2 = M2

0 +N
(n)
t + 〈Mτn〉t

where 〈Mτn〉t is a continuous non-decreasing process and N (n)
t is a local mar-

tingale.
Since τn ≤ τn+1 and the Doob-Meyer decomposition is unique it follows that

N
(n)
t 1(τn > t) = N

(n+1)
t 1(τn > t) = Nt1(τn > t) and

〈Mτn〉t1(τn > t) = 〈Mτn+1〉t1(τn > t) = 〈M〉t1(τn > t)

where Nt := lim
n↑∞

N
(n)
t is a local martingale and 〈M〉t = lim

n↑∞
〈Mτn〉t is a contin-

uous increasing process, which give the Doob-Meyer decomposition

M2
t = M2

0 +Nt + 〈M〉t

The process 〈M〉t is the predictable variation of the local martingale Mt. Note
that

Mt −Ms = 0 P -almost surely =⇒ 〈M〉t = 〈M〉s P -almost surely
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Definition 24. Let Mt, M̃t (Ft)-local martingales. We define by polarization
the predictable covariation as

〈M,M̃〉t :=
1
4
(
〈M + M̃〉t − 〈M − M̃〉t

)
=

1
2
(
〈M + M̃〉t − 〈M〉t − 〈M̃〉t

)
Note that 〈M,M〉t = 〈M〉t.

Proposition 8. 〈M,M̃〉t is the unique continuous process of finite (total) vari-
ation such that 〈M, M̃〉0 = 0 and

MtM̃t = M0M̃0 + N̂t + 〈M,M̃〉t (15)

where N̂t is a local martingale with N̂t = 0.

Proof Since (Mt ± M̃t) are local martingales with Doob-Meyer decomposi-
tions

(Mt ± M̃t)2 = (M0 ± M̃0)2 +N
(±)
t + 〈M ± M̃〉t

we use the polarization identity

MtM̃t =
1
4

{
(Mt + M̃t)2 − (Mt − M̃t)2

}
to obtain the semimartingale decomposition (15) with N̂t =

(
N

(+)
t −N (−)

t

)
/4 �

Exercise 15. Let (Bt, B̃t)t≥0 a pair of independent Brownian motion, and con-
sider the filtration Ft = σ(Bs, B̃s : s ≤ t)∨NP completed by the sets of measure
zero.

Bt and Bt are square integrable martingales.

EP
(
BtB̃t −BsB̃s

∣∣Fs)
= BsEP

(
B̃t − B̃s|

∣∣Fs)+ B̃sEP
(
Bt −Bs|

∣∣Fs)+ EP
(
(Bt −Bs)(B̃t − B̃s)

∣∣Fs) =

BsEP
(
B̃t − B̃s

)
+ B̃sEP

(
Bt −Bs

)
+ EP

(
(Bt −Bs

)
EP
(
B̃t − B̃s

)
= 0

therefore the product (BtB̃t) is a martingale and from the uniqueness of the
Doob-Meyer decomposition it follows that 〈B, B̃〉t = 0.

For α ∈ [0, 1], consider the process

Wt =
√
αBt +

√
(1− α)B̃t

It follows that (Wt) is a Brownian motion adapted to the filtration Ft. We have

EP
(
BtWt −BsWs

∣∣Fs)
= BsEP

(
Wt −Ws|

∣∣Fs)+ W̃sEP
(
Wt −Ws|

∣∣Fs)+ EP
(
(Bt −Bs)(Wt −Ws)

∣∣Fs)
= 0 +

√
αEP

(
(Bt −Bs)2

∣∣Fs)+
√

(1− α)EP
(
(Bt −Bs)(B̃t − B̃s)

∣∣Fs)
=
√
α(〈B〉t − 〈B〉s) =

√
α(t− s)

It follows that 〉B,W 〉t =
√
α〈B〉t =

√
αt

52



Theorem 14. LetM be a continuous martingale with |Mt(ω)| ≤ C <∞ ∀t > 0.
Then

[M ]t = lim
|∆|→0

∞∑
k=1

(Mt∧tk −Mt∧tk−1)2

where the limit exists in L2(P ) sense uniformly on compacts, with

∆ = (0 ≤ t0 < t1 < tn . . . ), |∆| := sup
i

(ti − ti−1)

[M ]t is continuous and non-decreasing and satisfies:

M2
t = M2

0 + [M ]t +Nt

where Nt is a true martingale. In other words [M ]t = 〈M〉t.

Proof Without loss of generality we assume M0 = 0, otherwise consider
Mt = (Mt −M0). Lets denote

T∆
t (M) :=

∞∑
k=1

(Mt∧tk −Mt∧tk−1)2 (16)

It follows that (M2
t − T∆

t (M)) is a martingale since:

(Mt −Ms)2 = M2
t −M2

s + 2Ms(Mt −Ms)

and by the martingale property

E
(
(Mt −Ms)2|Fs

)
= E

(
M2
t −M2

s

∣∣Fs) (17)

For s = s0 < s1 < · · · < sn = t

n∑
k=1

E
(
M2
sk
−M2

sk−1

∣∣Fs) =
n∑
k=1

E
({
Msk −Msk−1

}2∣∣Fs) = E(T∆
t (M)− T∆

s (M)
∣∣Fs)

In particular for fixed partitions ∆,∆′

Xt := T∆
t (M)− T∆′

t (M)

is a martingale. We will show that Xt = X∆,∆′

t → 0 in L2(P ) as |∆|, |∆′| → 0.
Denote ∆∆′ = ∆ ∪∆′, the coarsest partition of R+ containing both ∆ and

∆′. Note that for fixed ∆,∆′, Xt is bounded on compact intervals, since is the
sum of finitely many squared differences of the bounded process M .

Consider the process T∆∆′

t (X), which is defined as in 16 replacing the mar-
tingale Mt with the martingale Xt.

From 17 we see that

(X2
t − T∆∆′

t (X))

is also a martingale. Since (a− b)2 ≤ 2(a2 + b2), we have

E(X2
t ) = E(T∆∆′

t (X)) ≤ 2EP

(
T∆∆′

t (T∆(M)) + T∆∆′

t (T∆′(M))
)
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We show that EP
(
T∆∆′

t (T∆(M))
)
→ 0.

Let sk ∈ ∆∆′, tl ∈ ∆ such that tl ≤ sk < sk+1 ≤ tl+1.

T∆
sk+1

(M)− T∆
sk

(M) = (Msk+1 −Mtl)
2 − (Msk −Mtl)

2

= (Msk+1 −Msk)2 + 2(Msk+1 −Msk)(Msk −Mtl) = (Msk+1 +Msk − 2Mtk)(Msk+1 −Msk)

and assuming that t = sn ∈ ∆∆′

T∆∆′

t (T∆(M)) =
n−1∑
k=0

(
T∆
sk+1

(M)− T∆
sk

(M)
)2

≤ sup
k≤n

(Msk+1 +Msk − 2Mtk)2
n−1∑
k=0

(Msk+1 −Msk)2

= sup
k≤n

(Msk+1 +Msk − 2Mtk)2T∆∆′

t (M)

By taking expectation and using Cauchy-Schwartz inequality

EP

(
T∆∆′

t (T∆(M))
)
≤ EP

(
sup
k≤n

(Msk+1 +Msk − 2Mtk)4

)1/2

EP
({
T∆∆′

t (M)
}2)1/2

Since for P -almost all ω Ms(ω) is a continuous martingale, it is uniformly con-
tinuous on the compact [0, t],

sup
k≤n
|Msk+1 +Msk − 2Mtk | → 0

P -a.s. as |∆|, |∆′| → 0. Since |Mt(ω)| ≤ C, covergence in Lp(Ω) follows as well.
In order to complete the proof we show that

EP
({
T∆
t (M)

}2)
remains bounded as |∆| → 0.

Assuming that t = tn ∈ ∆, denoting ∆Mk = (Mtk −Mtk−1)

{
T∆
t (M)

}2 =
n∑
k=1

(∆Mk)4 + 2
n∑
k=1

( n∑
j>k

(∆Mj)2

)
, EP

({
T∆
t (M)

}2
)

≤ EP
(
T∆
t (M) sup

k≤n
(∆Mk)2

)
+ 2

n∑
k=1

EP

(
(Mt −Mtk)2(∆Mk)2

)
where in the last term we have taken conditional expectation with respect to
Ftk and used the martingale property

EP
(
M2
tn −M

2
tk

∣∣Ftk) = EP
(
(Mt −Mtk)2

∣∣Ftk)
We get

EP

({
T∆
t (M)

}2
)
≤ EP

(
T∆
t (M) sup

k≤n

{
(∆Mk)2 + 2(Mt −Mtk)2

})
≤ EP (T∆

t (M))12C2 = EP (M2
t )12C2 ≤ 12C4
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This shows that for each t and every sequence of partitions ∆n with |∆n| →
0,

T∆n
t (M) is a Cauchy sequence in L2(Ω).

Since for fixed k, n (T∆n
t (M) − T∆k

t (M)) is a martingale, by the Doob Lp-
martingale inequality

EP

(
sup
s≤t

(
T∆n
s (M)− T∆k

s (M)
)2) ≤ 4EP

((
T∆n
t (M)− T∆k

t (M))2

)
which means that T∆

s (M) is a Cauchy sequence in L2(Ω) uniformly on each
compact [0, t].

Therefore there exists a limiting process [Mt] such that

EP

(
sup
s≤t

(
[M ]s − T∆

s (M)
)2)→ 0

as |∆n| → 0, which does not depend on the choice of the sequence (∆n). In
particular there is a subsequence nj such that

sup
s≤t

∣∣[M ]s − T∆
s (M)

∣∣→ 0 P -almost surely .

It follows that [M ]s is non-decreasing since T∆
s (M) is non-decreasing.

Since the approximating processes T∆
s (M) are continuous and converging

P -almost surely uniformly on compacts, by the Ascoli-Arzela equicontinuity
criterium it follows that the limiting process [M ]t is almost surely continuous.

Next we check the martingale property: for s ≤ t, A ∈ Fs

EP

(
(M2

t −M2
s )1A

)
= EP

(
(T∆
t (M)− T∆

s (M))1A

)
→ EP

(
([M ]t − [M ]s))1A

)
since T∆

t (M) L2

→ [M ]t. Therefore (M2
t − [M ]t) is a true martingale and by the

uniqueness of the Doob-Meyer decomposition [M ]t = 〈M〉t. (This does not hold
for processes with jumps! ) �.

Corollary 12. Let Mt be a continuous local martingale. Then the process

[M ]t = lim
|∆|→0

∞∑
k=1

(
Mt∧tk −Mt∧tk−1

)2
exists as a limit in probability, it is non-decreasing and we have [M ]t = 〈M〉t in
the Doob-Meyer decomposition

M2
t = M2

0 + [M ]t +Nt

where Nt is a local martingale with N0 = 0.

By polarizarion we obtain also the quadratic covariation of two continuous
local martingales Mt and M̃t,

[M ]t = lim
|∆|→0

∞∑
k=1

(
Mt∧tk −Mt∧tk−1

)(
M̃t∧tk − M̃t∧tk−1

)
which coincides with the predictable covariation 〈M,M̃〉t.
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Proof Without loss of generality we assume that M0 = 0. There is a local-
izing sequence τn ↑ ∞ of stopping times such that and Mτn

t is a true martingale
with |Mτn

t | ≤ n.
N

(n)
t =

(
M2
t∧τn − [Mτn ]t

)
is a true martingale which is constant on the

interval [τn,∞).
Since N

(n+1)
t =

(
M2
t∧τn+1

− [Mτn+1 ]t
)
is also a true martingale, by the

uniqueness of the Doob-Meyer decomposition it follows that

[Mτn+1 ]t1(τn > t) = [Mτn ]t1(τn > t)

Define

[M ]t(ω) =
∞∑
n=1

1(τn−1 < t ≤ τn)[Mτn ]t

with τn−1 ≡ 0. Note that this sum for each ω contains finitely many nonzero
terms.

It follows that (M2
t − [M ]t) is a local martingale with localizing sequence τn.

Next we show convergence in probability of T∆
t (M) to [M ]t for fixed t:

P

(∣∣[M ]t − T∆
t (M)

∣∣ > ε

)
=

P

(
{τn ≤ t}

⋂{∣∣[M ]t − T∆
t (M)

∣∣ > ε

})
+ P

(
{τn > t}

⋂{∣∣[M ]t∧τn − T∆
t∧τn(M)

∣∣ > ε

})
P
(
τn ≤ t

)
+ P

(∣∣[Mτn ]t − T∆
t (Mτn)

∣∣ > ε

)
where for n large enough the first term is is arbitrarily small since 1(τn ≤ t)→ 0
P -a.s, and for such fixed n we let |∆| → 0 to make the second term small �.

15 Ito-isometry and stochastic integral
Proposition 9. LetM2 be the space of continuous martingalesMt(ω), bounded
in L2(Ω), with norm

‖M ‖2M2 := EP
(
M2
∞
)

= EP
(
〈M〉∞

)
M2 is complete and it is an Hilbert space with scalar product

(M,N)M2 := EP
(
M∞N∞

)
= EP

(
〈M,N〉∞

)
EP

(
sup
t≥0

M2
t

)1/2

≤ 2 ‖M ‖M2= EP

(
sup
t≥0

M2
t

)1/2

by Doob’s Lp martingale inequality

Proof Since supt≥0EP (M2
t ) <∞, Mt→M∞ P -almost surely and in L2(P ).

To show that M2 is complete, if (M (n))n∈N ⊆ M2 is a Cauchy sequence,
then (M (n)

∞ )n∈N is a Cauchy sequence in the complete space L2(Ω), therefore
∃M∞ ∈ L2(Ω) such that EP

(
(M (n)
∞ −M∞)2

)
→ 0.
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Define Mt(ω) := EP (M∞|Ft)(ω), it follows that M (n) → M ∈ M2, which
implies

EP

(
sup
t≥0

(Mt −M (n)
t )2

)
→ 0

In particular there is a subsequence (nj) such that for P -almost all ω

sup
t≥0

∣∣M (nj)
t (ω)−Mt(ω)

∣∣→ 0

which implies that t 7→Mt(ω) is continuous. �.

Definition 25. We say that the process Y (s, ω) is a simple predictable with
respect to the filtration (Ft), if it is adapted and left-continuous taking finitely
many values, that is

Ys(ω) :=
n∑
i=1

1(ai,bi](s)ηi(ω), n ∈ N

with 0 ≤ a1 < b1 ≤ a2 < b2 ≤ · · · < bn−1 ≤ an < bn < ∞ and ηi(ω) is
Fai-measurable.

Definition 26. Given the filtration (Ft)t≥0 we define on the measurable space
Ω×R+ the predictable σ-algebra P generated by the left continuous (Ft)-adapted
processes. When (ω, t) 7→ Yt(ω) is P-measurable, we say that the processY is
(Ft)-predictable.
Lemma 15. Let (Mt) ∈ M2 a continuous martingale, and Yt ∈ S a bounded
simple predictable process with representation 18. We define the Ito integral as

(Y ·M)t :=
∫ t

0

YsdMs :=
n∑
i=1

ηi(Mbi∧t −Mai∧t)

For Y ∈ S, the map Y 7→
∫∞

0
YsdMs is an isometry between L2

a

(
Ω×R+, P (dω)⊗

〈M〉(ω, dt)
)
andM2, with

EP

({∫ ∞
0

YsdMs

}2)
= EP

(∫ ∞
0

Y 2
s d〈M〉s

)
We have the property: for all (Nt) ∈M2,

〈(Y ·M), N〉t :=
∫ ∞

0

Ysd〈M,N〉s :=
n∑
i=1

ηi
(
〉Mbi∧t, N〉 − 〈Mai∧t, N〉

)
Proof By taking conditional expectation and using the martingale property

EP

({∫ ∞
0

YsdMs

}2)
=

n∑
i=1

EP

(
(η2
i (Mbi −Mai)

2

)
+ 2

n∑
i=1

∑
1≤j<n

EP

(
ηiηj(Mbi −Mai)(Mbj −Maj )

)
=

n∑
i=1

EP

(
(η2
iEP

(
(Mbi −Mai)

2|Fai
)

+ 2
n∑
i=1

∑
1≤j<n

EP

(
ηiηj(Mbj −Maj )EP (Mbi −Mai |Fai

)
=

n∑
i=1

EP

(
(η2
i (〈M〉bi − 〈M〉ai)

)
= EP

(∫ ∞
0

Y 2
s d〈M〉s

)
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Theorem 15. (Kunita-Watanabe inequality) Let (Nt), (Mt) ∈M2 and (Ys), (Us)
jointly measurable processes. Then P -almost surely for t ∈ [0,+∞]∫ t

0

|Ys||Us|d|〈M,N〉s| ≤
(∫ t

0

Y 2
s d〈M〉s

)1/2(∫ t

0

U2
s d〈N〉s

)1/2

By Hölder inequality, we have also for p, q > 1, p−1 + q−1 = 1

EP

(∫ t

0

|Ys||Us|d|〈M,N〉s|
)
≤ EP

({∫ t

0

Y 2
s d〈M〉s

}p/2)1/p(∫ t

0

U2
s d〈N〉s

}q/2)1/q

Note that we need joint measurability since we want that the maps t 7→
Y (t, ω) t 7→ U(t, ω) are B(R+)-measurable for all ω ∈ Ω, in order to use the
Lebesgue-Stieltjes integral.

The integral on the left hand side is a Lebesgue-Stieljes integral taken ω-wise
with respect to the total variation of the process 〈M,N〉t(ω)

Proof Note that ∀r ∈ R (Mt + rNt) ∈M2 and

0 ≤ 〈M + rN〉t = 〈M〉t + r2〈N〉t + 2r〈N,M〉t

Since this quadratic equation in the unknown r has at most one real solution,
we get the inequality for the discriminant

〈N,M〉2t − 〈M〉t〈N〉t ≤ 0⇐⇒
∣∣〈N,M〉t∣∣ ≤√〈M〉t√〈N〉t

The same inequality hold for increments.
By taking

Y ′s = |Ys|, U ′s = |Us|
d〈M,N〉
d|〈M,N〉|

(s)

where the last term on the right hand side is the Radon-Nikodym derivative of
〈M,N〉 with respect to its total variation, it is enough to show that∣∣∣∣ ∫ t

0

YsUsd〈M,N〉s
∣∣∣∣ ≤ (∫ t

0

Y 2
s d〈M〉s

)1/2(∫ t

0

U2
s d〈N〉s

)1/2

Assume that there is a finite Borel-measurable partition of [0, t] = ∪ni=1Bi and
random variables Ỹi(ω), Ũi(ω) such that

Ys(ω) =
n∑
i=1

Ỹi(ω)1Bi(s) Us(ω) =
n∑
i=1

Ũi(ω)1Bi(s)

Denote

∆Vi =
∫
Bi

dVs
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when Vs = 〈M,N〉s, 〈M〉s, 〈N〉s, is a process of finite variation.∣∣∣∣ ∫ t

0

YsUsd〈M,N〉s
∣∣∣∣ =

∣∣∣∣ n∑
i=0

ỸiŨi∆〈M,N〉i
∣∣∣∣

≤
n∑
i=0

|Ỹi||Ũi|
√

∆〈M〉i
√

∆〈N〉i

≤
( n∑
i=0

Ỹ 2
i ∆〈M〉i

)1/2( n∑
i=0

Ũ2
i ∆〈N〉i

)1/2

=
(∫ t

0

Y 2
s d〈M〉s

)1/2(∫ t

0

U2
s d〈N〉s

)1/2

where we used the Cauchy Schwartz inequality for sums. Since the sets Bi
are Borel-measurable but not necessarily intervals the integrals are Lebesgue-
Stieltjes integrals.

The result follows for example by the monotone convergence theorem for the
Lebesgue-Stieltjes integrals splitting first the integrands into positive and nega-
tive part anb then approximating from below by simple F ⊗B(R+)-measurable
processes �.

Lemma 16. . An (Ft)-adapted process (Mt) is a martingale if and only for all
bounded (Ft)-stopping times τ , the random variable Mτ (ω) ∈ L1(P ) and

EP
(
Mτ

)
= EP (M0)

Proof The necessity follows from Doob’s optional stopping theorem.
Sufficiency: let s ≤ t and A ∈ Fs. Define the random time

τ(ω) := s 1A(ω) + t 1Ac(ω)

Note that ∀u ≥ 0

{τ(ω) ≤ u} =

 Ω t ≤ u
A s < u ≤ t
∅ 0 ≤ s ≤ u

which is Fu measurable in all cases, therefore τ is a bounded stopping time.

EP (M0) = EP
(
Mτ ) = EP (1AMs + 1AcMt) =

EP
(
Mt

)
+ EP

(
1A(Ms −Mt)

)
= EP (

(
M0

)
− EP

(
1A(Mt −Ms)

)
=⇒ EP

(
1A(Mt −Ms)

)
= 0

which gives the martingale property.

Theorem 16. Let (Mt) ∈ M2 and Y (s, ω) a progressively measurable process
with

EP

(∫ ∞
0

Y 2
s d〈M〉s

)
<∞
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1. There exists an unique martingale in M2 which will be denoted by (Y ·
M)t =

∫ t
0
YsdMs such that ∀ (Nt) ∈M2,

EP

(
(Y ·M)∞N∞

)
= EP

(
〈Y ·M,N〉∞

)
= EP

(∫ ∞
0

Ysd〈M,N〉s
)

(18)

2. (Y ·M)0 = 0 and for all (Nt) ∈M2

(Y ·M)tNt −
∫ t

0

Ysd〈M,N〉s,

is a true martingale.

3. Ito isometry holds:

〈Y ·M〉t =
∫ t

0

Y 2
s d〈M,M〉s ∀t ∈ [0,+∞]. (19)

From the uniqueness result it follows that for simple predictable integrands
this definition of Ito integral coincides with the Riemann sums definition
given in (15).

Proof: (Uniqueness) Let (Lt) ∈ M2 with the same property. Then taking
Nt = {(Y ·M)t − Lt} ∈ M2 we have

EP

(
sup
t≥0

{
(Y ·M)∞ − L∞

}2
)
≤ 4EP

({
(Y ·M)∞ − L∞

}2
)

= 0

which means that {Lt} and {Y ·M)t} are indistinguishable processes.
(Existence): The map

N∞ 7→ ϕ(N) := EP

(∫ ∞
0

Ysd〈M,N〉s
)

is linear since the predictable covaration is bilinear. It is also continuous inM2

norm: by Kunita-Watanabe and Cauchy-Schwartz inequalities

|ϕ(N)| =
∣∣∣∣EP(∫ ∞

0

Ysd〈M,N〉s
)∣∣∣∣ ≤ EP(∫ ∞

0

Y 2
s d〈M〉s

)1/2

EP

(
〈N〉∞

)1/2

=

EP

(∫ ∞
0

Y 2
s d〈M〉s

)1/2

‖ N ‖M2

under the assumption that

EP

(∫ ∞
0

Y 2
s d〈M〉s

)1/2

By the Riesz representation theorem in the Hilbert space M2 there exists a
continuous martingale {(Y ·M)t} ∈ M2 such that

EP

(∫ ∞
0

Ysd〈M,N〉s
)

= ϕ(N) =
(
(Y ·M), N

)
M2 =

EP

(
(Y ·M)∞N∞

)
= EP

(
〈Y ·M,N〉∞

)
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Note: if you think about it, up to now we did not need predictability or
progressive measurability of (Ys), since by Kunita Watanabe inequality we just
need joint measurability.

Next we show that

Xt := Nt

∫ t

0

YsdMs −
∫ t

0

Ysd〈M,N〉s

is a martingale for all N ∈M2 and by definition of predictable covariation

〈Y ·M,N〉t =
∫ t

0

Ysd〈M,N〉s

which implies 19.
Let τ be a (Ft)-stopping time. By Cauchy Schwartz and Kunita Watanabe

inequalities it follows that Xτ ∈ L1(P ).
Since (Y ·M)t and (Nt) are uniformly integrable martingales (since they are

bounded in L2(Ω,F , P )), we write

EP
(
(Y ·M)τNτ

)
= EP

(
EP
(
(Y ·M)∞|Fτ

)
Nτ

)
= EP

(
(Y ·M)∞Nτ

)
=

EP

(
(Y ·M)∞Nτ

∞

)
= EP

(
〈(Y ·M), Nτ 〉∞

)
= by the defining property (20)

= EP

(
Y · 〈M,Nτ 〉∞

)
= EP

(
Y · 〈M,N〉τ

)
and the result follows by lemma 16. Note that here we need the assumption
that Ys(ω) is progressively measurable, since in order to apply the lemma we
need to show ∫ t

0

Ysd〈M,N〉s

and Xt are (Ft)-adapted.
To show that (Y ·M)0 = 0, takeNt ≡ N0 ∀t ∈M0, a constant F0-measurable

process.
Note that in this case by Kunita-Watanabe inequality |〈M,N〉t| ≤

√
〈M〉t

√
〈N〉t =

0 since [N,N ]t = 〈N,N〉t = 0 by the definition of quadratic variation.
Then

0 = EP

(∫ t

0

Ysd〈M,N〉s
)

= EP

(
(Y ·M)tNt

)
= EP

(
(Y ·M)tN0

)
= EP

(
(Y ·M)0N0

)
which implies (Y ·M)0 = 0 since N0 ∈ L2(Ω,F0, P ) is arbitrary.

By taking Nt = Mt, we also obtain

〈M, (Y ·M)〉t =
∫ t

0

Ysd〈M,M〉s

and by taking Nt = (Y ·M)t,

〈(Y ·M), (Y ·M)〉t =
∫ t

0

Ysd〈M, (Y ·M)〉s =
∫ t

0

Y 2
s d〈M,M〉s
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since in Lebesgue-Stieltjes integrals we have

d〈M, (Y ·M)〉s = ds

(∫ s

0

Yud〈M,M〉u
)

= Ysd〈M,M〉s

Remark This proof is a bit abstract since we used Riesz representation theo-
rem. A more standard proof for predictable integrands consists in approximating
the integrand Ys by a sequence (Y (n)

s ) of simple predictable (left-continuous and
adapted) integrands in the space L2

(
Ω×R+,P, P (dω)〈M〉(ω, dt)

)
obtaining by

Ito isometry a Cauchy sequence of Ito integrals inM2.
A constructive extension of this line of proof to progressively measurable in-

tegrands for which the Lebesgue-Stieltjes integral
∫ t

0
Ysd〈M〉s is not necessarily

well defined as a Riemann-Stieltjes integral, is a bit technical, since one needs
an intermediate approximation step in order to work with Riemann sums (see
for example the details in Karatzas and Schreve).

Proposition 10. Let (Mt) a continuous local martingale and (Yt(ω)) a pro-
gressively measurable process with∫ t

0

Y 2
s d〈M〉s <∞ P almost surely ∀t ∈ R+

Then there is a local martingale which we denote by (Y ·M)t =
∫ t

0
YsdMs

such that (Y ·M)0 = 0 and

〈(Y ·M), N〉t =
∫ ∞

0

Ysd〈M,N〉s (20)

for every continuous local martingale N .
Proof Let τn a localizing sequence of stopping times τn ↑ ∞ such that both

stopped processes Mτn and Nτn are martingales in M2. By 16 there exists a
process (Y ·Mτn)t verifying the theorem in the stochastic interval {(ω, t) : t ≤
τn(ω)}.

Lemma 17. Let (Ms) a continuous local martingale (Y (n)
s )n∈N a sequence of lo-

cally bounded progressively measurable integrands such that for all s|Y (n)
s (ω)| →

0 P -almost surely and there is a locally bounded process Ys(ω) such that |Y (n)
s (ω)| ≤

Ys(ω) ‚∀s, n, P -almost surely.
Then for all t ≥ 0

sup
s≤t

∣∣∣∣ ∫ t

0

Y (n)
s dMs

∣∣∣∣→ 0 in probability as n→∞

Let τ(ω) be a stopping time such that both stopped processes Mτ
s and Y τs

are bounded. Then by the bounded convergence theorem

EP (
∫ τ

0

(Y (n)
s )2d〈Ms〉

)
→ 0 as n→∞
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which implies∫ τ

0

Y (n)
s dMs → 0 in L2(Ω,F , P ) and in probability as n→∞

To comple the argument we for any fixed t choose the localizing stopping time
such that P (τ ≤ t) < ε and conclude as in corollary (??).

Proposition 11. (Extension by localization) Let (Mt) a continous local mar-
tingale and Ys is progressive such that ∀0 ≤ t <∞

P

(∫ t

0

Y 2
s d〈M〉s <∞

)
= 1

Define the stopping time (τn) := inf
{
t ≥ 0 :

∫ t
0
Y 2
s 〈M〉s ≥ n

}
. Then τn → ∞

P -a.s.
The stochastic integral defined as∫ t

0

YsdMs = lim
n→∞

∫ t∧τn

0

YsdMs

is a local martingale with localizing sequence τn.

Proof

Definition 27. We say that Xt = X0 + Mt + At is a semimartingale when
M0 = A0 = 0, Mt is a continuous local martingale and At is (Ft)-adapted with
locally finite variation.

(Xt) is continuous if and only if At is continuous.
For Yt progressive such that ∀0 ≤ t <∞∫ t

0

Y 2
s d〈M〉s <∞ and

∫ t

0

|Ys||dA|s <∞ P -almost surely

where the integral on the right side is with respect to the total variation of A,
we define ∫ t

0

YsdXs =
∫ t

0

YsdMs +
∫ t

0

YsdAs

16 Ito representation theorem

Let Bt = (B(1)
t , . . . , B

(d)
t ) a d-dimensional Brownian motion.

Theorem 17. Let Y ∈ L2(Ω,FBT , P ), T ∈ (0,+∞] a real valued random vari-
able. Then there is a progressive process Hs(ω) ∈ Rd with

EP

(∫ T

0

H2
sds

)
<∞

Y (ω) = EP (Y ) +
∫ T

0

HsdBs

Hs(ω) is unique P (dω)× ds almost surely.
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Proof Uniqueness: if H̃s has the same property, then by Ito isometry∫
Ω

(∫ T

0

(
Hs(ω)− H̃s(ω)

)2
ds

)
P (dω) = 0

Existence:

H =
{∫ T

0

HsdBs : H is progressive and in L2(Ω× [0, T ], dP × dt)
}

is a closed subspace of L2(Ω,FBT , P ), which follows since the space of progressive
integrands in L2(Ω× [0, T ], dP × dt) is complete.

We show that it is total, in the sense that if Y ∈ L2(Ω,FBT , P ) such that

EP

(
Y
∫ T

0
HsdBs

)
= 0 for all progressive H ∈ L2(Ω × [0, T ], dP × dt), then

Y (ω) = EP (Y ) is deterministic.

The theorem follows since this implies that the random variable
(
Y (ω) −

EP (Y )
)
coincides with its orthogonal projection on the closed subspace H.

Without loss of generality assume that EP (Y ) = 0, otherwise take Ỹ (ω) =
(Y (ω)−EP (Y )). For f ∈ L2([0, T ], dt) consider the square integrable martingale

M
(f)
t = exp

(
i

∫ t

0

f(s)dBs +
1
2

∫ t

0

f(s)2ds

)
By Ito formula

M
(f)
T − 1 = i

∫ T

0

M (f)
s f(s)dBs

Since the real and imaginary parts of the right hand side are stochastic integral
in H, it follows that

0 = EP

(
Y (M (f)

T − 1)
)

= EP

(
YM

(f)
T

)
− EP (Y ) = EP

(
YM

(f)
T

)
When f(s) =

∑n
i=1 θk1[0,tk](s) for θk ∈ Rd tk ∈ [0, T ], k = 1, . . . n, n ∈ N it

follows that

0 = EP

(
Y exp

(
i

n∑
k=1

θk ·Btk +
1
2

n∑
h,k=1

θhθk (th ∧ tk)
))

= EP

(
Y exp

(
i

n∑
k=1

θk ·Btk
))

exp
(

1
2

n∑
h,k=1

θhθk (th ∧ tk)
)

=⇒ EP

(
Y exp

(
i

n∑
k=1

θk ·Btk
))

= 0
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By the Lévy inversion theorem, which holds not on only for probability measures
but also for finite signed measure, a measure is characterized by its characteristic
function.

The signed measure on Rk×d defined as

µt1,...tn(A1 ×An) := EP

(
Y 1
(
Bt1 ∈ A1, . . . , Btn ∈ An

))
for Ak ∈ B(Rd), k = 1, . . . , n is equal to zero.

Since the cylinders generate the σ-algebra FBT , it follows by Dynkin extension
theorem that

EP (Y 1F ) = 0 ∀F ∈ FBT

By assumption Y ∈ FBT measurable, the result follows by taking F = 1(Y > 0),
and F = 1(Y < 0).

Corollary 13. Let (Mt) a martingale in the Brownian filtration bounded in L2,
that is EP (M2

∞) <∞ Then

Mt = EP (M∞|FBt )(ω) = M0 +
∫ t

0

HsdBs

where the integrand H ∈ L2(Ω×R+, dP×dt) is progressive and unique P (dω)×dt
almost surely. Note that since FB0 is P -trivial, M0 = EP (M0) = EP (M∞) is
deterministic.

Let F (ω) = f(BT (ω)) for some f(x) ∈ L2(R, γ(x)dx).

E
(
f(BT )

∣∣Ft) = E
(
f(Bt + (BT −Bt))

∣∣Ft)
= E

(
f(x+G

√
T − t)

)∣∣∣∣
x=Bt(ω)

=
∫

R
f(Bt(ω) + y

√
T − t)γ(y)dy =∫

R
f(u)

1√
T − t

γ

(
Bt − u√
T − t

)
dy =

where G(ω) ∼ N (0, 1) is a standard gaussian random variable with

P (G ∈ dy) = γ(y)dy = (2π)−1/2 exp
(
−y2/2

)
dy

Next we apply Ito formula and integration by parts to

g(Bt, u; t, T ) =
1√
T − t

γ

(
Bt − u√
T − t

)
=
P (BT ∈ du|Bt)

du

We do the calculation in steps:

γ′(y) = −yγ(y), γ′′(y) = γ(y)(y2 − 1),
d

dt
(T − t)−1/2 =

1
2

(T − t)−3/2
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and for a continuous semimartingale Yt

dγ(Yt) = γ(Yt)
(
−YtdYt +

1
2

(Y 2
t − 1)d〈Y 〉t

)
Now for Yt = (Bt−u)√

T−t we have using integration by parts

dYt =
1√
T − t

dBt +
1
2

(Bt − u)
(T − t)3/2

dt, d〈Y 〉t =
1

(T − t)
dt

Therefore

dγ(Yt) = γ(Yt)
(
− (Bt − u)

T − t
dBt −

1
2

(Bt − u)2

(T − t)2
dt+

1
2

(
(Bt − u)2

T − t
− 1
)

1
T − t

dt

)
=

−γ(Yt)
(
Bt − u
T − t

dBt +
1

2(T − t)
dt

)
Integrating by parts:

d

(
1√
T − t

γ(Yt)
)

=
1√
T − t

γ(Yt)
(
−Bt − u
T − t

dBt −
1

2(T − t)
dt+

1
2(T − t)

dt

)
=

1√
T − t

γ

(
Bt − u√
T − t

)(
u−Bt
T − t

)
dBt

Therefore we have simply

g(Bt, u, t, T ) = g(0, u, 0, T ) +
∫ t

0

g(Bs, u, s, T )
(
u−Bs
T − s

)
dBs

and the stochastic exponential representation

g(Bt, u, t, T ) = g(0, u, 0, T )E
(∫ ·

0

(
u−Bs
T − s

)
dBs

)
t

= g(0, u, 0, T ) exp
(∫ t

0

(
u−Bs
T − s

)
dBs −

1
2

∫ t

0

(
u−Bs
T − s

)2

ds

)
Integrating with respect to du we get

EP (f(BT )|Ft) =∫
R

f(u)g(Bt, u, t, T )du =
∫
R

f(u)g(0, u, 0, T )du+
∫
R

(∫ t

0

f(u)
(
u−Bs
T − s

)
g(Bs, u, s, T )dBs

)
du

= EP (f(BT )) +
∫ t

0

(∫
R

f(u)
(
u−Bs
T − s

)
g(Bs, u, s, T )du

)
dBs

= EP (f(BT )) +
∫ t

0

EP
(
f(BT )(BT −Bs)

∣∣Fs)
(T − s)

dBs

where we used a stochastic Fubini theorem (to be explained in the next para-
graph) in order to invert the order of integration w.r.t. between du and dBs.
Note that since by assumption f(BT ) ∈ L2(Ω), the term

EP (f(BT )(BT −Bs)|Fs)
T − s

=
Cov(f(BT ), BT |Fs)

Var(BT |Fs)

=
EP ((f(BT )− f(Bs))(BT −Bs)|Fs)

T − s
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is the conditional correlation between f(BT ) and BT given Fs.
Note also that we proved in between that g(x, u, s, T ) satisfies the heat equa-

tion

∂

∂s
g(x, u, s, T ) +

1
2
∂2

∂x2
g(x, u, s, T ) = 0

with boundary condition g(x, u, T, T ) = δ0(x − u) the Dirac delta function in
the sense of Schwartz distributions.

Up to now we just assumed that f ∈ L2(R, dγ). When f(x) = f(0) +∫ x
0
f ′(u)du is absolutely continuous with respect to Lebesgue measure we can

use the gaussian integration by parts formula

E(f(Bt)Bt) = tEP (f ′(Bt))

which holds when Bt ∼ N (0, t) gaussian.
In this case we write Ito’s representation also as

EP
(
f(BT )

∣∣Ft) = EP
(
f(BT )

)
+
∫ t

0

EP
(
f ′(BT )

∣∣Fs)dBs
Example Let F (ω) = f

(∫ T
0
h(s)dBs

)
, where h(s) ∈ L2([0, T ], ds) is de-

terministic and EP
(
f(‖ h ‖2 G)2

)
<∞, for G(ω) standard gaussian r.v.

Then we have the representation

F (ω) = EP
(
f(‖ h ‖2 G)

)
+
∫ T

0

EP

(
f

(∫ T
0
h(s)dBs

)∫ T
t
h(s)dBs

∣∣∣∣Fs)∫ T
t
h(s)2ds

h(t)dBt

Hint: define the determistic time change

τ(u) = inf
{
t :
∫ t

0

h(s)2ds ≥ u
}

Then by Lévy characterization theorem B̃u :=
∫ τ(u)

0
h(s)dBs is a Brownian

motion and F eB
u = FBτ(u).

Letting T̃ =
∫ T

0
h(s)2ds.

In Malliavin calculus these ideas are extended to more general setting where
there is not need to use the Markov property.

Theorem 18. Stochastic Fubini theorem.
Let (Θ,A, α(dθ)) be a measurable space, where α(dθ) is a finite measure,

and H(s, ω, θ) a jointly measurable process, such that the map θ 7→ H(s, ω, θ) is
A-measurable for each (s, ω) and the map (s, ω) 7→ H(s, ω, θ) is (Ft)-progressive
for each θ ∈ Θ.

Assuming that for all t, P -almost surely∫
[0,t]×Θ

H(s, ω, θ)2(α⊗ 〈M〉)(dθ × dt) <∞

which by the classical Fubini theorem does not depend on the order of integration.
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Then∫ t

0

(∫
Θ

H(s, ω, θ)α(dθ)
)
dMs =

∫
Θ

(∫ t

0

H(s, ω, θ)dMs

)
α(dθ)

is a local martingale which does not depend on the order of integration.

ProofWithout loss of generality assume that α(dθ) is a probability measure.
By the definition of joint measurability is a sequence of simple integrands of the
form

H(n)(s, ω, θ) =
n∑
i=1

H
(n)
i (s, ω)1(θ ∈ A(n)

i )

where (A(n)
1 , . . . A

(n)
n ) is a measurable partition of Θ and H(n)

i (s, ω) are progres-
sive processes, such that∫

[0,T ]×Θ

{
H(n)(s, ω, θ)−Hs(s, ω, θ)

}2
d〈M〉sα(dθ)→ 0

in probability.
By the linearity of Ito integral the stochastic Fubini theorem holds for the

simple integrands H(n). Note also that by Jensen inequality∫ T

0

(∫
Θ

(
Hn(s, ω, θ)−H(s, ω, θ)

)
α(dθ)

)2

d〈M〉s

≤
∫

[0T ]×Θ

(
Hn(s, ω, θ)−H(s, ω, θ)

)2
α(dθ)⊗ d〈M〉s

P→ 0

This implies∫
Θ

(∫ T

0

H(n)(s, θ)dBs

)
α(dθ) =∫ T

0

(∫
Θ

H(n)(s, θ)α(dθ)
)
dBs

P→
∫ T

0

(∫
Θ

H(n)(s, θ)α(dθ)
)
dBs

and since ∫
Θ

(∫ T

0

(
H(n)(ω, s, θ)−H(ω, s, θ)

)2
d〈M〉s

)
α(dθ) P→ 0

It follows that∫
Θ

(∫ T

0

(H(n)(s, θ)dBs

)
α(dθ) P→

∫
Θ

(∫ T

0

(H(s, θ)dBs

)
α(dθ)

Proposition 12. Gaussian integration by parts formula. If G(ω) ∼ N (0, 1) is
centered gaussian and f(x) = f(0) +

∫ t
0
f ′(y)dy is absolutely continuous such

that both (f ′(G)− f(G)G) and f(G) are in L1(P ). Then

EP
(
f(G)G

)
= EP

(
f ′(G)

)

68



’Proof We recall that the standard gaussian density γ(x), satisfies γ′(x) =
−xγ(x) Integrating by parts, for all a ≤ b ∈ R

f(b)γ(b)− f(a)γ(a) =
∫ b

a

(f ′(y)− f(y)y)γ(y)dy

If f(x) is compactly supported, the left-hand side equals zero for |a| and |b| large.
As a→ −∞ and b→ +∞ the left hand side converges to EP

(
f ′(G)− f(G)G

)
.

More in general we approximate f(x) with a sequence of compactly sup-
ported functions. Let kn(x) = (1−|x|/n)+. We have 0 ≤ kn(x) ≤ 1, d

dxkn(x) =
−n−1sign(x)bf1(|x| ≤ n), and lim

n→∞
kn(x) = x, ∀x ∈ R.

Let fn(x) = f(x)kn(x).

0 = E(f ′n(G)− fn(G)G) = E((f ′(G)− F (G)G)kn(G)) + E(f(G)k′n(G))

where we used the chain rule of differentiation. Since |(f ′(G)−F (G)G)kn(G)| ≤
(f ′(G)− F (G)G) ∈ L1(P ), by Lebesgue’ dominated convergence theorem

E((f ′(G)− F (G)G)kn(G))→ E(f ′(G)− F (G)G)

and E(|f(G)k′n(G)|) ≤ n−1E(|f(G)|)→ 0
Example the maximum process
Let Bt be a standard Brownian motion starting from zero, FBt = σ(Bs : 0 ≤

s ≤ t). Define

B∗t = sup
0≤s≤t

{Bs},

Ha = inf
{
t > 0 : Bt ≥ a

}
respectively the running maximum and the first hitting time of level a > 0

Proposition 13. For a > 0, by the reflection principle

P (Ha ≤ `) = P (B∗` ≥ a) = 2P (B` > a) = 2
(
1− Φ(a/

√
`)
)

where Φ(x) = P (B1 ≤ x).
By differentiating with respect to ` we obtain the probability density of the

hitting time Ha

P (Ha ∈ d`)
d`

= pHa(`) =

(2π)−1/2 exp
(
−a

2

2`

)
a `−3/2 1(` > 0), a > 0

Moreover

P (B≥` a,B` ∈ dx) =
1√
`
γ

(
a+ |x− a|√

`

)
dx (21)

Proof We define a Brownian motion reflected after Ha

B̃t =
{
Bt , t ≤ Ha

2a−Bt t > Ha

69



with representation

B̃t =
∫ t

0

(
1(s ≤ Ha)− 1(s > Ha)

)
dBs

where the integrand is bounded anb adapted since Ha is a (FBt )-stopping time
Since

〈B̃〉t =
∫ t

0

(
1(s ≤ Ha)− 1(s > Ha)

)2

ds = t

by Lévy characterization it follows that B̃t is a Brownian motion.
By drawing a figure we see that

{B∗` ≥ a} = {B` ≥ a} ∪ {B` ≥ a}

where {B` ≥ a} ∩ {B` ≥ a} = ∅

P
(
B∗` ≥ a

)
= P

(
{B` ≥ a} ∪ {B` ≥ a}

)
= P

(
B` ≥ a

)
+ P

(
B` ≥ a

)
=

2P (B` ≥ a
)

= 2
(
1− Φ(a/

√
`)
)

= 2Φ(−a/
√
`)

where Φ(x) is the cumulative distribution function of a standard gaussian r.v.

By the same argument

P (B∗` ≥ a,B` ∈ dx) = P (B∗` ≥ a, B̃` ∈ dx) = P (B∗` ≥ a, 2a−B` ∈ dx)

now there are two case either x ≥ a or x < a. When x ≥ a

P (B∗` ≥ a,B` ∈ dx)
dx

(x) =
P (B` ∈ dx)

dx
(x)

otherwise 2a− x > a. and

P (B∗` ≥ a,B` ∈ dx)
dx

(x) =
P (B` ∈ dx)

dx
(2a− x)

In both cases this gives formula (21).

17 Barrier option in Black and Scholes model
Consider the Black and Scholes model for a risky asset and a riskless bond.

St = S0 exp
(∫ t

0

σsdBs +
∫ t

0

(
µt −

σ2
t

2
)
dt

)
,

Ut = U0 exp
(∫ t

0

ρsds

)
S0 > 0, U0 > 0
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dSt = St(µtdt+ σtdBt), dUt = Utρtdt

here µt, σt, Ut are adapted to the Brownian filtration FBt .
Denote the discounted process

S̃t =
St
Ut

= S̃0 exp
(∫ t

0

σsdBs +
∫ t

0

(
µt − ρt −

σ2
t

2
)
dt

)
satisfying

dS̃t = S̃t
(
σtdBt + (µt − ρt)dt

)
Denote

B̃t := Bt +
∫ t

0

(µs − ρs)
σs

ds =
∫ t

0

(S̃sσs)−1dS̃u

We want to represent the discounted value of the option F̃ (ω) := F (ω)(ST (ω))−1

as a stochastic integral with respect to the discounted stock S̃t, which is also a
stochastic integral with respect B̃t. However B̃t is not Brownian motion under
the measure P since it has a drift.

In order to use the Ito representation theorem we must first change the
measure in order to kill the drift of B̃t, which becomes a Brownian motion
under the new measure Q.

EP (f(BT )1(B∗T > a)) =
∫

R
f(x)

1√
T
γ

(
a+ |x− a|√

T

)
dx

EP (f(BT )1(B∗T > a)|Ft) = EP (f(BT )1(B∗T > a)|Bt, B∗t )

= 1(B∗t > a)EP (f(x+
√
T − tG))

∣∣∣∣
x=Bt

+ 1(B∗t ≤ a)EP
(
f(x+WT−t)1(W ∗T−t ≥> (a− x))

)∣∣∣∣
x=Bt

1(B∗t > a)
∫

R
f(x)

1√
T − t

γ

(
x−Bt√
T − t

)
dx+ 1(B∗t ≤ a)

∫
R
f(x)

1√
T − t

γ

(
a−Bt + |x− a|√

T − t

)
dx

By using Ito formula and stochastic Fubini theorem

EP (f(BT )1(B∗T > a)|Ft) = EP (f(BT )1(B∗T > a))

+
∫ t

0

1(B∗s > a)
(∫

R
f(x)

1√
T − s

γ

(
x−Bs√
T − s

)
x−Bs
T − s

dx

)
dBs +

∫ t

0

1(B∗s ≤ a)
(∫

R
f(x)

1√
T − s

γ

(
a−Bs + |x− a|√

T − s
)
a−Bs + |x− a|

T − s
dx

)
dBs

= EP (f(BT )1(B∗T > a)) +
∫ t

0

1(B∗s > a)
EP
(
f(BT )(BT −Bs)

∣∣Fs)
(T − s)

dBs

+
∫ t

0

1(B∗s ≤ a)
EP
(
f(BT )(a−Bs + |BT − a|)|Fs

)
T − s

dBs

We can also write the joint law of B∗t , Bt.
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P

(
B∗t > y,Bt ≤ x

)
= P

(
Hy ≤ t, (Bt −BHy ) ≤ (x− y)

)
=
∫ t

0

Φ
(
x− y√
t− `

)
P (Hy ∈ d`)

= (2π)−1/2

∫ t

0

Φ
(
x− y√
t− `

)
exp
(
−y

2

2`

)
y `−3/2 d` =∫ t

0

Φ
(
x− y√
t− `

)
1√
`
γ

(
y√
`

)
y

`
d`

and the joint density is given by

P (B∗t ∈ dy,Bt ∈ dx)
dxdy

= − ∂2

∂x∂y
P

(
B∗t > y,Bt ≤ x

)
=
∫ t

0

1√
t− `

γ

(
x− y√
t− `

)
1√
`
γ

(
y√
`

)
1
`

(
y2

`
− 1− y(x− y)

(t− `

)
d`

(23)

By differentiating w.r.t. a we obtain the density of B∗` :

P (B∗` ∈ da)
da

= pB∗` (a) =

2√
2π`

exp
(
−a

2

2`

)
1(a ≥ 0) =

2√
`
γ

(
a√
`

)
1(a ≥ 0)

We now compute the regular conditional density given the σ-algebra FBt ,
t ≥ 0.

For any bounded measurable function g

EP (g(Ha)|FBt ) = g(Ha)1(Ha ≤ t) + EP (g(Ha)|Bt, Ha > t)1(Ha > t) =

g(Ha)1(Ha ≤ t) + EP (g(t+Ha−x))
∣∣∣∣
x=Bt

1(Ha > t)

where have derived the Markov property of Brownian motion, and there is a
regular version of the conditional probability which up to the stopping time Ha

has density

M(`, t) :=
P (Ha ∈ d`|Bt, Ha > t)

d`
= (2π)−1/2 exp

(
− (Bt − a)2

2(`− t)

)
(a−Bt)
(`− t)3/2

1(` > t)

Note that since the process

EP (g(Ha)|Ft∧Ha) =
∫ ∞

0

M(`, t ∧Ha)g(`)d`

is a martingale for every bounded measurable g, M(`, t ∧ Ha) is a martingale
for all values ` > 0. We use Ito formula to find the martingale representation
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with respect to the Brownian motion:

dM(`, t) = (2π)−1/2M(`, t)
{

(Bt − a)−1dBt +
3
2

(`− t)−1dt− (Bt − a)
(`− t)

dBt −
1

2(`− t)
dt

− (Bt − a)2

2(`− t)2
dt+

1
2

(Bt − a)2

(`− t)2
dt− (Bt − a)

(`− t)(Bt − a)
dt

}
=

M(`, t)
{

1
(Bt − a)

+
(a−Bt)
`− t

}
dBt = M(`, t)F (`− t, a−Bt)dBt

We have the stochastic exponential representation

M(`, t ∧Ha) = M(`, 0)E
(∫ ·

0

{
1

(Bs − a)
+

(a−Bs)
`− s

}
dBs

)
t∧Ha

=

M(`, 0) exp
(∫ t∧Ha

0

{
1

(Bs − a)
+

(a−Bs)
`− s

dBs −
1
2

∫ t∧Ha

0

{
1

(Bs − a)
+

(a−Bs)
`− s

}2)
Note that the process (B∗t , Bt) is Markovian:

EP (f(B∗` )|Fs) = 1(` ≤ s)f(B∗` ) + 1(` > s)EP
(
f(max{x, y +W ∗`−s

√
`− s})

)∣∣∣∣
x=B∗s ,y=Bs

= 1(` ≤ s)f(B∗` ) + 1(` > s)
∫ ∞

0

f(max{B∗s (ω), Bs(ω) + v)
2√
`− s

γ

(
v√
`− s

)
dv

= 1(` ≤ s)f(B∗` ) + 1(` > s)
{
f(B∗s )

(
2Φ
(
B∗s −Bs√
`− s

)
− 1
)

+
∫ ∞
B∗s

f(v)
2√
`− s

γ

(
v −Bs√
`− s

)
dv

}
Assume absolute continuity f(x) = f(0) +

∫ x
0
f ′(y)dy.

For s < ` we use integration by parts obtaining

EP
(
f ′(B∗T )1(B∗T > B∗s )

∣∣Fs) =
∫
B∗s

f ′(v)
2√
`− s

γ

(
v −Bs√
`− s

)
dv =

−f(B∗s )
2√
`− s

γ

(
B∗s −Bs√
`− s

)
+
∫ ∞
B∗s

f(x)
2√
`− s

γ

(
v −Bs√
`− s

)(
v −Bs
`− s

)
dv =

−f(B∗s )
2√
`− s

γ

(
B∗s −Bs√
`− s

)
+ EP

(
f(B∗T )

(B∗T −Bs)
`− s

1(B∗T > B∗s )
∣∣∣∣Fs)

Therefore Ito representation gives

EP
(
f(B∗` )

∣∣Fs) =

EP (f(B∗T )) +
∫ `

0

{
EP

(
f(B∗` )

(B∗` −Bs)
`− s

1(B∗` > B∗s )
∣∣∣∣Fs)

−f(B∗s )
P (W ∗`−s ∈ dv|W0 = Bs)

dv
(B∗s −Bs)

}
dBs

= EP (f(B∗` )) +
∫ T

0

EP
(
f ′(B∗` )1(B∗` > B∗s )

∣∣Fs)dBs
where (Wt) is an independent Brownian motion. The last expression holds only
when f(x) is absolutely continuous.

Suppose now we want to compute the representation of f(BT (ω), B∗T (ω)) ∈
L2(P ) We need to compute the joint conditional laws P (BT ∈ dx,B∗T ∈ dy|Ft) =
P (BT ∈ dx,B∗T ∈ dy|Bt, B∗t ).
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18 Stochastic differential equation
Given a Brownian motion (Bt) we look for a stochatic process (Xt : t ∈ [s, T ])
such that

Xt = η +
∫ t

s

b(u,Xu)du+
∫ t

s

σ(u,Xu)dBu 0 ≤ s ≤ t (24)

with η(ω) FBs -measurable. Of such process exists and it is adapted to the (FBt )
we say that it is a strong solution of the stochastic differential equation (25) In
differential notation we write

dXt = b(t,Xt)dt+ σ(t,Xt)dBt, t ≥ s (25)

with initial condition Xs(ω) = η(ω).

18.1 Generator of a diffusion
Lemma 18. Assume that the SDE 25 has a strong solution and that ϕ(t, x) ∈
C1,2(R+ ×Rm;R). Then

dϕ(t,Xt) =
∂ϕ(t,Xt)

∂x
dXt +

1
2
∂2ϕ(t,Xt)

∂x2
d〈X〉t +

∂ϕ(t,Xt)
∂t

dt =

∂ϕ(t,Xt)
∂x

σ(t,Xt)dBt +
{
∂ϕ(t,Xt)

∂x
b(t,Xt) +

1
2
∂2ϕ(t,Xt)

∂x2
σ(t,Xt)2 +

∂ϕ(t,Xt)
∂t

}
dt

Define the space-time generator operator

(Ltφ)(t, x) = b(t, x)
∂ϕ(t, x)
∂x

1
2
σ(t, x)2 ∂

2ϕ(t, x)
∂x2

+
∂ϕ(t, x)
∂t

It follows that

Mt(ϕ) := ϕ(t,Xt)− ϕ(0, X0)−
∫ t

0

(Lsϕ)(s,Xs)ds =
∫ t

0

∂ϕ(s,Xs)
∂x

σ(s,Xs)dBs

is a continuous local martingale with M0(ϕ) = 0, such that for any local mar-
tingale (Nt)

〈M(ϕ), N〉t =
∫ t

0

∂ϕ(s,Xs)
∂x

σ(s,Xs)d〈B,N〉s

In particular for another ψ(t, x) ∈ C2,1

〈M(ϕ),M(ψ)〉t =
∫ t

0

∂ϕ(s,Xs)
∂x

∂ψ(s,Xs)
∂x

σ(s,Xs)2ds

Exercise 16. Using the definition show that

〈M(ϕ),M(ψ)〉t =
∫ t

0

(Ls(ϕψ)− ϕLsψ − ψLsϕ)(s,Xs)ds

Hint: By polarization it is enough to consider the case ψ(t, x) = ϕ(t, x) For
simplicity you can consider the time-homogeneous case with σ(t, x) = σ(x)
b(t, x) = b(x) and ϕ(t, x) = ϕ(x).
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Note that by construction for H(s, ω) progressively measurable the Ito inte-
gral Xt = (H · B)t =

∫ t
0
HsdBs is the continuous local martingale (unique up

to indistinguishability) such that

〈(H ·B),M〉t =
∫ t

0

Hsd〈B,M〉s

for any local martingale (Mt). This implies that for another progressively mea-
surable K(s, ω)

Yt := (K ·X)t =
∫ t

0

KsdXs =
∫ t

0

KsHsdBs = ((KH) ·B)t

since for any local martingale (Mt)

〈Y,M〉t =
∫ t

0

Ksd〈X,M〉s =∫ t

0

KsHsd〈B,M〉 =
〈
((KH) ·B),M

〉
t

since this associative property holds for Lebesgue Stieltjes integrals.

18.2 Stratonovich integral
Let Mt be a continuous local martingale and Xt a semimartingale. We define
the Stratonovich integral as∫ t

0

Xs ◦ dMs =
∫ t

0

XsdMs +
1
2

[X,M ]t

The idea is that the Ito integral corresponds with the forward integral which
is the limit in probability of the approximating Riemann sums∫ t

0

Xsd
−Ms = (P ) lim

∆(Π)→0

∑
ti∈Π

Xti(Mti+1∧t −Mti∧t)

This corresponds adapted piecewise constant approximating integrands

X−s = Xti when s ∈ (ti, ti+1]

The choice

X+
s = Xti+1 when s ∈ (ti, ti+1]

does not give necessarily an adapted integrand. Nevertheless it is clear that
since

Xti+1(Mti+1∧t −Mti∧t) = Xti(Mti+1∧t −Mti∧t) + (Xti+1 −Xti)(Mti+1∧t −Mti∧t) =

necessarily the backward integral∫ t

0

Xsd
+Ms = (P ) lim

∆(Π)→0

∑
ti∈Π

Xti+1(Mti+1∧t −Mti∧t) =
∫ t

0

Xsd
−Ms + [X,M ]t
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is also well defined.
The Stratonovich integral is approximated by picking the middle point

X◦s = X(ti+ti+1)/2 when s ∈ (ti, ti+1]

We have∑
ti∈Π

X(ti+ti+1)/2(Mti+1∧t −Mti∧t) =

∑
ti∈Π

Xti(Mti+1∧t −Mti∧t) +
∑
ti∈Π

(X(ti+ti+1)/2 −Xti)(M(ti+ti+1)/2∧t −Mti∧t)

+
∑
ti∈Π

(X(ti+ti+1)/2 −Xti)(Mti+1∧t −M(ti+ti+1)/2∧t)

P→
∫ t

0

Xsd
−Ms +

1
2

[M,X]t + 0

as ∆(Π)→ 0
Therefore∫ t

0

Xs ◦ dMs =
1
2

(∫ t

0

Xsd
−Ms +

∫ t

0

Xsd
+Ms

)
the Stratonovich integral is the average of forward integral and a backward
integral.

Note the Stratonovich integral obeys the law of standard calculus. Assuming
for simplicity that f ∈ C3, By Ito formula,

f(Mt) = f(M0) +
∫ t

0

f ′(Ms)d−Ms +
1
2
f ′′(Ms)d〈M〉s = f(M0) +

∫ t

0

f ′(Ms)◦dMs

since

〈f ′(M),M〉t =
〈∫ ·

0

f ′′(Ms)dMs,M

〉
t

=
∫ t

0

f ′′(Ms)d〈M,M〉s

18.3 Doss-Sussman explicit solutions
In the one-dimenstional case, sometimes we are able to proceed as follows:

Consider the SDE in Stratonovich sense

dXt = b(Xt)dt+ σ(Xt) ◦ dWt

= b(Xt)dt+ σ(Xt)dWt +
1
2
d〈σ(X), B〉t =

(
b(Xt) +

1
2
σ′(Xt)σ(Xt)

)
+ σ(Xt)dWt

where in the first line the stochastic integral is in Stratonovich sense and on the
second line in Ito sense. Here σ′(x) = d

dxσ(x)
We look for a solution of the form Xt = u(Wt, Yt) for some smooth function

u(x, y) and a continous process of finite variation Yt.
Taking Stratonovich differential we get

dXt =
∂

∂x
u(Wt, Yt) ◦ dWt +

∂

∂y
u(Wt, Yt)dYt
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which means that

∂

∂x
u(x, y) = σ(u(x, y))

dYt =
(
∂

∂y
u(Wt, Yt)

)−1

b(u(Wt, Yt))dt

We get also

∂2

∂x2
u(x, y) = σ′(u(x, y))σ(u(x, y)),

∂2

∂x∂y
u(x, y) = σ′(u(x, y))

∂

∂y
u(x, y),

We impose the additional condition u(0, y) = y, from which follows

∂

∂y
u(0, y) = 1,

∂

∂y
u(x, y) = 1 +

∫ x

0

∂2

∂x∂y
u(ξ, y)dξ = 1 +

∫ x

0

∂

∂y
u(ξ, y)σ′(u(ξ, y))dξ =

= exp
(∫ x

0

σ′(u(ξ, y))dξ
)

Substituting

Yt = Y0 +
∫ t

0

exp
(
−
∫ Ws

0

σ′(u(ξ, Ys))dξ
)
b(u(Ws, Ys))ds

By solving these ODE we obtain the solution Xt = u(Wt, Yt).

Example Consider the SDE

dXt = cos(Xt)dt+Xt ◦ dWt = (cos(Xt) +
1
2
Xt)dt+XtdWt

written respectively with Stratonovich and Ito differentials
the ODE

∂

∂x
u(x, y) = u(x, y), u(0, y) = y

has solution

u(x, y) = y exp(x)

and

Yt = Y0 +
∫ t

0

exp(−Ws) cos(Ys exp(Ws))ds

The solution is Xt = Yt exp(Wt). In fact by using integration by parts,

◦dXt = exp(Wt)dYt + Yt ◦ d exp(Wt)
exp(Wt) exp(−Wt) cos(Yt exp(Wt))dt+ Yt exp(Wt) ◦ dWt = cos(Xt)dt+Xt ◦ dWt
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19 Cameron-Martin-Girsanov theorem
We denote by Pt the restriction of P on the σ-algebra Ft.

Let (Mt) a {Ft}-local martingale under the measure P and(Ht) an {Ft}-
adapted process such that for all 0 ≤ t < +∞∫ t

0

H2
sd〈M〉s <∞ P almost surely

We want to find a probability measure Q such that

M̃t = Mt +
∫ t

0

Hsd〈M〉s, (26)

is a local martingale with respect to the measure Q and Qt � Pt ∀t < ∞.

(notation Q
loc
� P )

Lemma 19. Assume that Q
loc
� P . The likelihood ratio process

Zt(ω) :=
dQt
dPt

(ω) (27)

is a true martingale with respect to the reference measure P .

Proof For s < t, if A ∈ Fs ⊆ Ft,

Q(A) = EP (Zt1A) = EP (Zs1A)

which gives the martingale property under P .

Note We recall also that a non-negative local martingale Zt is a super-
martingale, since if τn ↑ ∞ is a localizing sequence, for s ≤ t by the Fatou
lemma for conditional expectation

EP (Zt|Fs) = EP
(
lim inf
n↑∞

Zt∧τn
∣∣Fs) ≤ lim inf

n↑∞
EP (Zt∧τn |Fs)

≤ lim inf
n↑∞

Zs∧τn = Zs

Moreover Zt is a true martingale if and only if EP (Zt) = 1, since in such case

Zs − EP (Zt|Fs) ≥ 0 and EP (Zs) = EP (Zt) = 1

implies Zs = EP (Zt|Fs) P -almost surely.

Lemma 20. Let P probability measures on (Ω,F) equipped with the filtration
{Ft} Then Xt is a Q (local)-martingale if and only if the product process (XtZt)
is a P (local)-martingale.

Proof for s ≤ t A ∈ Fs we have

EQ(Xt1A) = EP (ZtXt1A)
EQ(Xs1A) = EP (ZsXs1A)
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therefore the right hand sides coincide if and only if the left hand sides do.
Moreover if τn ↑ ∞ is a localizing sequence,

EQ(Xt∧τn1A) = EP (ZtXt∧τn1A) = EP (Zt∧τnXt∧τn1A)
EQ(Xt∧τn1A) = EP (ZtXt∧τn1A) = EP (Zt∧τnXt∧τn1A)

since the stopping time (t ∧ τn) ≤ t is bounded and by Doob optional sampling
theorem

EP (Zt|Ft∧τn) = Zt∧τn �

Theorem 19. (Cameron-Martin-Girsanov) Let Q a probability meausure such

that Q
loc
� P and the change of drift formula (26) holds.

Necessarily

Zt = Yt exp
(∫ t

0

HsdMs −
1
2

∫ t

0

H2
sd〈M〉s

)
where Yt ≥ 0 is a continuous P -martingale with EP (Y0) = 1 and [M,Y ]t = 0
∀t, and the change of drift formula (26) reads as

M̃t = Mt −
∫ t

0

1
Zs
d〈M,Z〉s

In particular when Yt ≡ 1 ∀t, the change of measure is minimal, in the sense
that every P -(local) martingale Xt such that [X,M ]t ≡ 0 is also a Q-(local)
martingale.

Proof By the assumption and lemma 20, the product (ZtM̃t) is a local
martingale under P . Using integration by parts, we obtain the martingale de-
composition under Q

d(ZtM̃t) = ZtdMt + ZtHtd〈M〉t +MtdZt + d〈M̃, Z〉t =(
ZtdMt +MtdZt

)
+
(
ZtHtd〈M〉t + d〈M,Z〉t

)
which implies

〈M,Z〉t = −
∫ t

0

ZsHsd〈M〉s

This is satisfied if and only if
1
Zt
dZt = −HtdMt + dXt

where Xt is a P -martingale with 〈M,X〉 = 0.
Let’s assume first that Xt = 0. Then by Ito formula the solution of the linear

stochatic differential equation dZt = −ZtHtdMt is the exponential martingale

Zt = Z0E(H ·M)t = Z0E
(
−
∫ ·

0

HsdMs

)
t

:=

Z0 exp
(
−
∫ t

0

HsdMs −
∫ t

0

H2
sd〈M〉s

)
Here Z0(ω) = dQ0

dP0
(ω) is F0-measurable.

More in general

Zt = Z0E(H ·M +X)t = Z0E(H ·M)tE(X)t �
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20 Stochastic filtering
Lemma 21. Let Mt be a continuous local martingale under P with respect
to a filtration (Gt)t≥0, and assume that (Mt) is adapted to a smaller filtration
(Ft)t≥0, with Ft ⊆ G.

Then Mt is also a (Ft)-local martingale.

Proof
Let τn = inf{t : |Mt| ≥ n}. Since Mt is (Ft)-adapted, τn are stopping times

in the (Ft)- filtration, with τn ↑ ∞, and we know that for each n, the stopped
processMτn

t = Mt∧τn is a true (Gt)-martingale since it is bounded, which means
that in particular for 0 ≤ s ≤ t ∀A ∈ Gs

EP (
(
Mt∧τn −Ms∧τn)1A

)
= 0

But this holds in particular ∀A ∈ Fs, which means that (Mτn
t )t≥0 is a true

(Ft)-martingale.

Note Without the continuity assumption we are not able to to produce a
localizing sequence of (Ft)-stopping times, just knowing that there is a localizing
sequence of (Gt)-stopping times.

Lemma 22. Let (Bt) be aBrownian motion with the martingale property in the
filtration (Gt) and obviously also with respect to the smaller filtration (FBt ) ⊆
(Gt) generated by itself.

Let H(s, ω) a (Gt)-adapted process which is not necessarily (FBt )-adapted,
such that ∫ t

0

EP (H2
s )ds <∞

Then

EP

(∫ t

0

HsdBs

∣∣∣∣FBt ) =
∫ T

0

EP (Hs|FBs )dBs

Moreover if Mt is a (Gt)-martingale with 〈M,B〉s = 0, ∀0 ≤ s ≤ t then

EP
(
Mt −M0

∣∣FBt ) = 0

Proof Let A ∈ FBt . By the Ito-Clarck representation theorem

1A = P (A) +
∫ t

0

KsdBs
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for some K ∈ L2([0, t]× Ω) adapted to (FBt ).

EP

(
1A

∫ t

0

HsdBs

)
= P (A)EP

(∫ t

0

HsdBs

)
+ EP

(∫ t

0

KsdBs

∫ t

0

HsdBs

)
= 0 + EP

(
〈K ·B,H ·B〉t

)
= EP

(∫ t

0

KsHsds

)
=∫ t

0

EP (KsHs)ds =
∫ t

0

EP
(
KsEP (Hs|Fs)

)
ds

= EP

(〈∫ ·
0

KsdBs,

∫ ·
0

EP (Hs|Fs)dBs
〉
t

)
= 0 + EP

(∫ t

0

KsdBs

∫ t

0

EP (Hs|Fs)dBs
)

= EP

(
1A

∫ t

0

EP (Hs|Fs)dBs
)

=

where we used the Ito isometry and the definition of conditional expectation �

For the second part of the lemma, if M0 = 0, 〈M,B〉s = 0, s ≤ t, A ∈ FBt
as before,

EP ((Mt −M0)1A) = P (A)EP (Mt −M0) + EP ((Mt −M0)
∫ t

0

KsdBs) =

0 + EP

(∫ t

0

Ksd〈M,B〉s
)

= 0

which means EP (Mt −M0|FBt ) = 0 �

Consider the stochastic filtering settings in the St Flour lecture notes by E
Pardoux :

dXs = b(s, Y,Xs)ds+ f(s, Y,Xs)dVs + g(s, Y,Xs)dWs

dYs = h(s, Y,Xs)ds+ dWs

with (V,W ) are independent P -Brownian motions and consider the filtration
{Ft} with Ft = FV,W,t and {Yt} with Yt = FYt .

Here Xt is the state process, and the problem is to estimate “on-line” Xt

using the information from the observation filtration {Yt} which gives in noisy
observations of the signals h(s, Y,Xs).

For simplicity, it is assumed all all coefficient processes are bounded and
Lipshitz.

We introduce a reference measure Q under which

dXs = {b(s, Y,Xs)− h(s, Y,Xs)g(s, Y,Xs)
}
ds+ f(s, Y,Xs)dVs + g(s, Y,Xs)dYs

and Y is a Brownian motion w.r.t Q in the {Ft} filtration. It follows that
Pt � Qt with

Zt :=
dPt
dQt

= exp
(∫ t

0

h(s, Y,Xs)dYs −
1
2

∫ t

0

h(s, Y,Xs)2ds

)
satisfying the linear SDE dZt = Zth(t, Y,Xt)dYt.
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For a function ϕ ∈ C2
B , bounded and with bounded derivatives, by abstract

Bayes formula

πt(ϕ) := EP (ϕ(Xt)|Yt) =
EQ(ϕ(Xt)Zt|Yt)

EQ(Zt|Yt)
=
σt(ϕ)
σt(1)

Here πt is the posterior probability measure process, and σt is the unnormalized
posterior measure.

σt(ϕ) = EQ(ϕ(Xt)Zt|Yt) satisfies the following SDE driven by the Q Brow-
nian motion (Yt) in the (Yt) filtration:

σt(ϕ) = σ0(ϕ) +
∫ t

0

σs(Ls,Y ϕ)ds+
∫ t

0

σs(L1
s,Y ϕ)dYs (28)

where Ls,Y and L1
s,Y are differential operators on C2 depending on time and on

the past observations of Y :

Ls,Y ϕ =
1
2

(f2(s, Y, ·) + g2(s, Y, ·)) ∂
2

∂2x
ϕ+ b(s, Y, ·) ∂

∂x
ϕ

L1
s,Y ϕ = h(s, Y, ·)ϕ+ g(s, Y, ·) ∂

∂x
ϕ

To check this step, note that by the integration by parts formula

d(ϕ(Xt)Zt) = Ztdϕ(Xt) + ϕ(Xt)dZt + d〈ϕ(Xt), Z〉t

= Ztϕ
′(Xt)dXt +

1
2
Ztϕ

′′(Xt)d〈X〉t + Ztϕ(Xt)h(t, Y,Xt)dYt + Ztϕ
′(Xt)g(t, Y,Xt)h(t, Y,Xt)dt

= Zt
{
ϕ′(Xt)g(t, Y,Xt) + ϕ(Xt)h(t, Y,Xt)

}
dYt + Ztϕ

′(Xt)f(t, Y,Xt)dVt +

+Ztϕ′(Xt)
{
b(t, Y,Xt)− h(t, Y,Xt)g(t, Y,Xt) + g(t, Y,Xt)h(t, Y,Xt)

}
dt

+
1
2
Ztϕ

′′(Xt)
{
f(t, Y,Xt)2 + g(t, Y,Xt)2

}
dt

= Zt
{
ϕ′(Xt)g(t, Y,Xt) + ϕ(Xt)h(t, Y,Xt)

}
dYt + Ztϕ

′(Xt)f(t, Y,Xt)dVt

+Zt
{
ϕ′(Xt)b(t, Y,Xt) +

1
2
Ztϕ

′′(Xt)
(
f(t, Y,Xt)2 + g(t, Y,Xt)2

)}
dt

In integral form this means

ϕ(Xt)Zt = ϕ(X0) +
∫ t

0

Zs
{
ϕ′(Xs)g(s, Y,Xs) + ϕ(Xs)h(s, Y,Xs)

}
dYs +∫ t

0

Zsϕ
′(Xs)f(s, Y,Xs)dVs

+
∫ t

0

Zs
{
ϕ′(Xs)b(s, Y,Xs) +

1
2
ϕ′′(Xs)

(
f(s, Y,Xt)2 + g(s, Y,Xt)2

)}
ds
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We take now conditional expectation under Q with respect to the σ-algebra Yt.

σt(ϕ) := EQ(ϕ(Xt)Zt|Yt) =
EQ(ϕ(X0)|Yt)

+EQ

(∫ t

0

Zs
{
ϕ′(Xs)g(s, Y,Xs) + ϕ(Xs)h(s, Y,Xs)

}
dYs

∣∣∣∣Yt)
+EQ

(∫ t

0

Zsϕ
′(Xs)f(s, Y,Xs)dVs

∣∣∣∣Yt)
+EQ

(∫ t

0

Zs
{
ϕ′(Xs)b(s, Y,Xs) +

1
2
ϕ′′(Xs)

(
f(s, Y,Xt)2 + g(s, Y,Xt)2

)}
ds

∣∣∣∣Yt)
and 28 follows by lemma 22.

When ϕ(x) ≡ 1 we get a linear SDE for the random normalizing constant in
Bayes formula:

σt(1) = 1 +
∫ t

0

σs(1)EP (h(s, Y,Xs)|Ys)dYs

with solution

σt(1) = exp
(∫ t

0

EP (h(s, Y,Xs)|Ys)dYs +
1
2

∫ t

0

EP (h(s, Y,Xs)|Ys)2ds

)
Consequently by the Cameron Martin Girsanov theorem (19)

Yt −
∫ t

0

EP (h(s, Y,Xs)|Ys)ds

is a P Brownian motion in the {Yt} filtration.

21 Final exam :
These questions form the final exam, hopefully to be returned by the end of the
summer. It is allowed to consult the literature and to collaborate with fellow
students.

Question 1 ): Use the change of measure formula to show that

EQ(Zt|Yt) = σt(1) =
dP |Yt
dQ|Yt

Question 2 ): Use integration by parts formula for the ratio πt(ϕ) =
σt(ϕ)/σt(1) to prove the Zakai filter equation

πt(ϕ) = π0(ϕ) +
∫ t

0

πs(Ls,Y ϕ)ds+
∫ t

0

{
πs(L1

s,Y ϕ)− πs(h(s, Y, ·))πs(ϕ)
}(
dYs − πs(h(s, Y, ·))ds

)
Question 3) Show that

Yt −
∫ t

0

πs(h(s, Y, ·))ds
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is a Brownian motion with respect to the measure P and the filtration (Yt).

Consider the linear gaussian case with

dXs = Xsb(s)ds+ f(s)dVs + g(s)dWs

dYs = Xsh(s)ds+ dWs

with b(s), h(s), f(s), g(s) deterministic functions.

Question 4):Write down the Zakai filter equation for the prediction process

X̂t := E(Xt|Yt)

Question 5): Write down the equation for the prediction error variance

σ̂2
t := E((Xt − X̂t)2|Yt)

Since the process (Xt, Yt) is jointly gaussian (why ? for example one can study
the characterstic function ) you should get a deterministic equation, called Ric-
cati equation.

Since (Xt, Yt) is jointly gaussian, it follows that conditionally on the σ-
algebra Yt, Xt is conditionally gaussian with (random) conditional mean X̂t

and (deterministic) conditional variance σ̂2
t . You must use gaussianity in order

to compute the conditional moments πt(xk) for k = 1, 2, 3 which will appear in
the Zakai equation.

For simplicity you can assume that the functions b(s), h(s), f(s), g(s) are
constant. If you want to simplify further, assume that g(s) = 0.

A standard reference on stochastic filtering theory is in Liptser and Shiryaev
statistics of random processes.
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