
Numerical integration of SDE’s

1 Introduction

A self-contained presentation of numerical methods for stochastic differential equations including MATLAB codes
can be found in the review paper [4]. More details can be found in [1]. A good starting reference for ordinary
differential equations is [3].

2 Integration by Taylor series of ODE’s

Problems involving ordinary differential equations (ODE’s) can always be reduced to the study of sets of first-order
differential equations. For example, the second-order equation

d2ξt
dt2

= f(t)
dξt
dt

+ g(t) (2.1)

can be turned into the first order system

dξt
dt

= ζt

dζt
dt

= f(t) ζt + g(t) (2.2)

Thus it is sufficient to discuss numerical schemes for the first order system of equations

dξt
dt

= f (ξt, t) (2.3)

in a time interval for t > to and with initial condition

ξto = xo (2.4)

We will suppose in what follows the vector field f(x, t) smooth (i.e. analytic) in Rd × R. The equation (2.3) can be
couched into the integral form

ξt = xo +
∫ t

to

dsf (ξs, s) (2.5)

which we can integrate by iteration using the relation

g(ξt, t) = g(xo, to) +
∫ t

to

dg (ξs, s)

= g(xo, to) +
∫ t

to

ds [g (ξs, s) · (∂ξs
g) (ξs, s) + (∂sg) (ξs, s)] (2.6)
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satisfied by any smooth vector field g. For example, iterating twice we get into

ξt = xo + (t− to) f (xo, to) +
∫ t

to

df (ξu, u)

= xo + (t− to) f (xo, to) +
(t− to)2

2
df

dt
(xo, to) +

∫ t

to

du1

∫ u1

to

du2

∫ u2

to

du3
d2f

du3
3

(
ξu3

, u3

)
(2.7)

In other words, smoothness guarantees that integrating (2.3) is equivalent to generate the coefficients of the Taylor
expansion of f around the point (xo , to). This result can be used to construct numerical integration schemes of
ODE’s.

3 Euler scheme

The simplest integration scheme is the Euler method. First we partition the finite time interval T := t − to into n
sub-interval of equal size

δt :=
t− to
n

(3.1)

so that

tk = to + k δ t & t = tn = to + n δ t (3.2)

The quantity δt is often referred to as the mesh size of the discretization. If δt is “sufficiently” small i.e. n is large
enough we can approximate

xtk+1
' xtk + f (xtk , tk) δ t (3.3)

The symbol ' here means that the left hand side equals the right hand side if we neglect terms of order O
(
δt2
)
. In

such a case, we can estimate the flow generated by the ordinary differential equation with the one of the discrete map

yk+1 = yk + f(yk , tk) δt (3.4)

In one dimension or for each vector component of x ∈ Rd, the Euler scheme is the following recursion algorithm:

Algorithm 1 Euler
xvar = xo
tvar = to
tfin =t
npartinions = n
mesh = (tfin-tinit)/n
for k = 1, n do

xvar = xvar + f(xvar,tvar) * mesh
tvar= tvar+mesh
print tvar xvar

end for

The statement print means that the outcome of the calculation is sent to some output (e.g. stored into a data file).
The local discretization error

lk = xtk − yk (3.5)
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and the global discretization error

en = xtn − yn (3.6)

are standard measures of the accuracy of the approximation. A reliable numerical integration should provide an
estimate for this errors. This is usually done by checking the convergence of the results to a given value versus the
mesh size. In order to examine the dependence of the global discretization error upon the mesh it is convenient to
consider exponential changes of the mesh size

δti =
t− to
ni

i = 1, 2, . . . (3.7)

and define

y
(i)
k+1 = y

(i)
k + f

(
y

(i)
k , tk

)
(3.8)

Then one can study

∆i = ln ||y(i+1)

ni+1 − y
(i)

ni || (3.9)

versus ln δti. The reason for introducing logarithms is that variations of order of magnitude in the ∆i are reflected in
change of slope in logarithmic scale. An alternative way to proceed to estimate errors, is to compare at fixed mesh the
results of the Euler scheme and of an higher order scheme. The order of a scheme is defined as follows. A method is
said to converge with order γ ∈ N if there exists a constant K < ∞ such that the global discretization error satisfies
the bound

||en+1|| < K (δt)γ ∀ δt ∈ [0, δ?t] (3.10)

The Euler scheme can be proved to have order 1. Intuitively the order of the scheme can be thought as specified by the
highest order term of the Taylor series matching the increment of the discrete map defining the approximation scheme
in the limit of vanishing mesh size.

3.1 Limitations of the Euler scheme: stiffness

There are several reasons that Eulers method is not recommended for practical use, among them,

1. the method is not very accurate when compared to other at equivalent mesh size.

2. the method is not very stable.

The second pathology arises in the treatment of “stiff” systems of differential equations. Dictionary definitions of the
word “stiff” refer to concept like “being not easily bent”, “rigid” and “stubborn”. In the context of ODE’s a problem
is said to be stiff if [3]

A problem is stiff if the solution being sought varies slowly, but there are nearby solutions that vary
rapidly, so the numerical method must take small steps to obtain satisfactory results.

[2] provides the following example.

dx1

dt
= a x1 + b x2

dx2

dt
= −(a+ c)x1 − (b+ c)x2 (3.11)
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with

c = O(1) > 0 & b− a = O(103) > 0 (3.12)

Independently of the value of the parameters the system is explicitly integrable. The orthonormal change of variables

X :=
x1 + x2√

2
& x =

x1 − x2√
2

(3.13)

partially diagonalizes the system

d

dt
(x1 + x2) = −c (x1 + x2)

d

dt
(x1 − x2) = (2 a+ c)x1 + (2 b+ c)x2

⇒

d

dt
X = −cX

d

dt
x = (a+ b+ c)X + (a− b)x

(3.14)

Remark: a systematic theory for the analytic integration of linear ODE’s with constant coefficients

dx

dt
= Ax (3.15)

proceeds from similarity transformations

x = Oy det O 6= 0 (3.16)

such that

dy

dt
= O−1 A Oy | O−1 A O = diag A (3.17)

where diag means the full diagonalization of A or at least its reduction to Jordan form. The variables (3.13) reduce
the equivalent of the matrix A for the system (3.11) to triangular form so that the system can be readily integrated

Xt = Xo e
−c t

xt = xo e
(a−b) t + (a+ b+ c)Xo

∫ t

0
ds e(a−b) (t−s)e−c s (3.18)

Performing the integral gives

xt = xo e
(a−b) t +

a+ b+ c

b− a− c
Xo

{
e−c t − e(a−b) t

}
(3.19)

Going back to the original variables the solution of (3.11) versus initial conditions (x1;o , x2;o) reads

x1 =
Xt + xt√

2
=
b(x1;o + x2;o) e−c t − [(a+ c)x1;o + b x2;o]e(a−b) t

b− a− c

x2 =
Xt + xt√

2
=
− (a+ c) (x1;o + x2;o) e−c t + [(a+ c)x1;o + b x2;o]e(a−b) t

b− a− c
(3.20)

Using now the hypotheses (3.12) with

c =
1
τ

& b− a =
1000
τ

(3.21)

we see that in order to observe the decay of the exponential e(a−b) t we need a mesh size

δt � τ

1000
(3.22)
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Failing to satisfy (3.22) may compromise the stability of the numerical integration scheme. The reason is that for any
matrix A the components of the map

yk+1 = Ayk (3.23)

with solution

yn = An yo (3.24)

tends to zero as n tends to infinity if the largest eigenvalue of A has magnitude less than unity. The Euler scheme for

dx

dt
= −Cx (3.25)

with C a positive definite matrix corresponds to the map

yk+1 = (1− C δt)yk (3.26)

Denoting by c? the largest eigenvalue of C

c? := max spC (3.27)

the condition for ||yk|| to be bounded is therefore that

max sp {1− C δt} < 1 ⇒ δt <
2
c?

(3.28)

The example shows the source of the instability of the Euler scheme: the mesh size must be carefully chosen in
order to achieve convergence. Other integration schemes maybe, however, less sensitive to the mesh size even in the
presence of “stiff” problems. A nice article on stiff systems can be found at
http://www.scholarpedia.org/article/Stiff_systems

4 Euler-Maruyama and Milstein scheme

We can adapt the above considerations to stochastic differential equations. Consider the Ito model

dξt = b (ξt, t) dt+ σ (ξt, t) [dwt]
ξto = xo (4.1)

with as usual

σi (ξt, t) [dwt] := σij (ξt, t) dw
j
t (4.2)

4.1 Euler-Maruyama scheme

The simplest integration scheme is the Euler-Maruyama

ξtn+1
= ξtn + b

(
ξtn , tn

)
δt+ σ

(
ξtn , tn

)
[ηtn ]
√
δt (4.3)

As in the ODE case implies a uniform partition of the interval [to, t] of mesh

δt =
t− tn
N

(4.4)

At the n-th time step tn, the future state of the system ξtn+1
is computed using the present state ξtn and by sampling the

value of the random variable ηtn belonging to a sequence
{
ηti
}N
i=1

of independent identically distributed Gaussian
random variables with zero mean and unit variance.
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4.2 Milstein scheme

At variance with the ODE case, the Euler scheme does not correspond to a truncation of the Taylor series of the
solution of the stochastic differential equation at order dt. Namely, if we iterate (4.1) with the help of Ito’s lemma, we
get into

ξt = xo + b
(
ξto , to

)
(t− to) + σ

(
ξto , to

)
[wt −wto ]

+
∫ t

to

ds1

∫ s1

to

db
(
ξs1 , s2

)
+
∫ t

to

∫ s1

to

(dσ)
(
ξs2 , s2

)
[dws1 ] (4.5)

where now

(dσ) (ξs, s) = ds

[
∂s + b · ∂ξs

+
σik (ξs, s)σjk (ξs, s)

2
∂ξi

s
∂ξi

s

]
σ (ξs, s) + σ (ξs, s) [dws] · ∂ξs

σ (ξs, s) (4.6)

The stochastic integral on the right hand side of (4.5) brings therefore about a term of the order O(dt). In particular
we can single out the O(dt) term∫ t

to

∫ s1

to

σ
(
ξs2 , s2

)
[dws2 ] · ∂ξs2

σ
(
ξs2 , s2

)
[dws1 ] ≡

∫ t

to

∫ s1

to

σjk
(
ξs2 , s2

)
dwks2∂ξsj

2

σil
(
ξs2 , s2

)
dwls1 (4.7)

and evaluate it by iteration∫ t

to

∫ s1

to

σjk
(
ξs2 , s2

)
dwks2∂ξsj

2

σil
(
ξs2 , s2

)
dwls1 =∫ t

to

dwls1

∫ s1

to

dwks2

{
σjk

(
ξto , to

)
∂ξ

t
j
o

σil
(
ξto , to

)
+
∫ s2

to

d[σjk
(
ξs3 , s3

)
∂ξ

s
j
3

σil
(
ξs3 , s3

)
]
}

(4.8)

Of the two terms on the right hand side, the second is readily order O(dt3/2) and it can be neglected for the purpose
of deriving the Taylor expansion up to order O(dt). In order to analyze the first term, we can decompose it into index
symmetric and antisymmetric parts∫ t

to

dwls1

∫ s1

to

dwks2 =
∫ t

to

∫ s1

to

dwls1dw
k
s2 + dwks1dw

l
s2

2
+
∫ t

to

∫ s1

to

dwls1dw
k
s2 − dw

k
s1dw

l
s2

2
(4.9)

The decomposition is useful because the index symmetric part is integrable∫ t

to

∫ s1

to

dwls1dw
k
s2 + dwks1dw

l
s2

2
=
wltw

k
t − wltow

k
to

2
− (t− to)δlk

2
(4.10)

The antisymmetric part is instead vanishing in mean and can be therefore argued to pertain (in mean sense) to order
higher than O(dt) in the Taylor expansion of the solution. Gathering the above results, we conclude

ξt = xo + b
(
ξto , to

)
(t− to) + σ

(
ξto , to

)
[wt −wto ]

+

[
(wlt − wlto)(wkt − wkto)

2
− (t− to)δlk

2

]
σjk

(
ξto , to

)
∂ξ

t
j
o

σil
(
ξto , to

)
+ . . . (4.11)

where . . . stand for terms that we can neglect in the derivation of the O(dt) integration scheme. After introducing, as
above, a partition of the time interval mesh δt we may approximate paths of (4.1) by the map

ξtn+1
= ξtn + b

(
ξtn , tn

)
δt+ σ

(
ξtn , tn

)
[ηtn ]
√
δt+

δt

2

(
ηltnη

k
tn − δ

lk
)
σjk

(
ξtn , tn

)
∂ξ

t
j
n

σil
(
ξtn , tn

)
(4.12)

where again ηtn is the n-th element of the sequence
{
ηti
}N
i=1

of independent identically distributed Gaussian random
variables with zero mean and unit variance. Such an approximation is usually referred to as Milstein scheme.
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