1 Introduction

The presentation of Girsanov's theorem follows [1] where from further details can be found.

2 Girsanov formula

This section follows [1].
Proposition 2.1 (Exponential martingale). Let \boldsymbol{w}_{t} is a d-dimensional Wiener process (Brownian motion) and assume that

$$
\boldsymbol{b}: \Omega \times \mathbb{R} \rightarrow \mathbb{R}^{d}
$$

is non-anticipative, and such that

$$
\begin{equation*}
\prec e^{c \int_{0}^{T} d t \mid\|\boldsymbol{b}\|^{2}} \succ<\infty \tag{2.1}
\end{equation*}
$$

for some $c>0$ then

$$
M_{t}=e^{\int_{0}^{t} d \boldsymbol{w}_{s} \cdot \boldsymbol{b}_{s}-\int_{0}^{t} d s \frac{\left\|\boldsymbol{b}_{s}\right\|^{2}}{2}} \quad 0 \leq t \leq T
$$

is a martingale
Proof. By direct application of Ito lemma

$$
d M_{t}=d \boldsymbol{w}_{t} \cdot \boldsymbol{b}_{t} M_{t}
$$

thus

$$
\prec d M_{t} \succ=0
$$

which shows that M_{t} is a local martingale. The condition 2.1 is a technical condition ensuring that

$$
\prec\left|M_{t}\right| \succ<\infty
$$

whence for all $t \leq T$ we have

$$
\prec\left|M_{t}\right| \succ=\prec M_{t} \succ=1
$$

Theorem 2.1 (Girsanov). Consider a probability measure P on the space of paths $\left\{\boldsymbol{w}_{t} \mid 0 \leq t \leq T\right\}$ such that \boldsymbol{w}_{t} is a d-dimensional Wiener process (Brownian motion) and assume that for

$$
\boldsymbol{b}: \Omega \times \mathbb{R} \rightarrow \mathbb{R}^{d}
$$

non-anticipative

$$
M_{t}:=e^{\int_{0}^{t} d \boldsymbol{w}_{s} \cdot \boldsymbol{b}_{s}-\int_{0}^{t} d s \frac{\left\|\boldsymbol{b}_{s}\right\|^{2}}{2}} \quad 0 \leq t \leq T
$$

is a martingale. In such a case, we can define a new measure Q on path space $\left\{\boldsymbol{w}_{t} \mid 0 \leq t \leq T\right\}$ such that its Radon-Nikodym derivative with respect to P is

$$
\frac{d Q_{t}}{d P_{t}}=M_{t}
$$

meaning that for any functional F of \boldsymbol{w}_{t} the identity

$$
\int d Q F:=\int d P F M_{t} \quad \text { (alternative notation }: \prec F \succ_{Q}=\prec F M_{t} \succ \text {) }
$$

holds true. Then, the stochastic process

$$
\boldsymbol{\zeta}_{t}=\boldsymbol{w}_{t}-\int_{0}^{t} d s \boldsymbol{b}_{s}
$$

is a Wiener process with respect to Q.
Proof. We need to show that increments of ζ_{t} are independent each with Gaussian generating (characteristic) function.

- Gaussian for of the Generating function: we need to prove

$$
\prec e^{\boldsymbol{\lambda} \cdot \boldsymbol{\zeta}_{t}} \succ_{Q}=e^{\frac{\|\boldsymbol{\lambda}\|^{2} t}{2}}
$$

Namely

$$
\prec e^{\boldsymbol{\lambda} \cdot \boldsymbol{\zeta}_{t}} \succ_{Q}=\prec e^{\boldsymbol{\lambda} \cdot \boldsymbol{w}_{t}-\int_{0}^{t} d s \boldsymbol{\lambda} \cdot \boldsymbol{b}_{s}} e^{\int_{0}^{t} d \boldsymbol{w}_{s} \cdot \boldsymbol{b}_{s}-\int_{0}^{t} d s \frac{\left\|\boldsymbol{b}_{s}\right\|^{2}}{2}} \succ
$$

can be written as

$$
\prec e^{\boldsymbol{\lambda} \cdot \boldsymbol{\zeta}_{t}} \succ_{Q}=e^{\frac{\|\boldsymbol{\lambda}\|^{2} t}{2}} \prec e^{\int_{0}^{t} d \boldsymbol{w}_{s} \cdot\left(\boldsymbol{\lambda}+\boldsymbol{b}_{s}\right)-\int_{0}^{t} d s \frac{\left\|\boldsymbol{b}_{s}+\boldsymbol{\lambda}\right\|^{2}}{2}} \succ=e^{\frac{\|\boldsymbol{\lambda}\|^{2} t}{2}}
$$

since

$$
M_{t}^{(\lambda)}=e^{\int_{0}^{t} d \boldsymbol{w}_{s} \cdot\left(\boldsymbol{\lambda}+\boldsymbol{b}_{s}\right)-\int_{0}^{t} d s \frac{\left\|\boldsymbol{b}_{s}+\boldsymbol{\lambda}\right\|^{2}}{2}}
$$

is a martingale, if M_{t} is.

- Independence of increments: by construction

$$
\boldsymbol{\zeta}_{t+t_{o}}-\boldsymbol{\zeta}_{t_{o}}=\boldsymbol{w}_{t+t_{o}}-\boldsymbol{w}_{t_{o}}+\int_{t_{o}}^{t} d s \boldsymbol{b}_{s}
$$

is for any t, t_{o} independent of $\boldsymbol{z}_{t_{o}}$. Then

$$
\prec e^{\boldsymbol{\lambda} \cdot \boldsymbol{\zeta}_{t+t_{o}}} \succ_{Q}=\prec e^{\boldsymbol{\lambda} \cdot \boldsymbol{\zeta}_{t+t_{o}}-\boldsymbol{\lambda} \cdot \boldsymbol{\zeta}_{t_{o}}} e^{\boldsymbol{\lambda} \cdot \boldsymbol{\zeta}_{t_{o}}} \succ_{Q}=\prec\left[e^{\left.\boldsymbol{\lambda} \cdot \boldsymbol{\zeta}_{t+t_{o}}-\boldsymbol{\lambda} \cdot \boldsymbol{\zeta}_{t_{o}} \frac{M_{t+t_{o}}}{M_{t_{o}}}\right] e^{\boldsymbol{\lambda} \cdot \boldsymbol{\zeta}_{t_{o}}} M_{t_{o}} \succ}\right.
$$

Introducing the conditional expectation with respect to the σ-algebra $\mathcal{W}_{t_{o}}$ induced by the Wiener-process up to time t_{o} we can also write

$$
\left.\eta_{t, t_{o}}=\prec e^{\boldsymbol{\lambda} \cdot\left(\boldsymbol{\zeta}_{t+t_{o}}-\boldsymbol{\zeta}_{t_{o}}\right)} \frac{M_{t+t_{o}}}{M_{t_{o}}} \right\rvert\, \mathcal{W}_{t_{o}} \succ
$$

By the coarsening property of conditional expectation (see e.g. section H of chapter 2 of [2]) we have

$$
\prec e^{\boldsymbol{\lambda} \cdot \boldsymbol{\zeta}_{t+t_{o}}} \succ_{Q}=\prec \eta_{t, t_{o}} e^{\boldsymbol{\lambda} \cdot \boldsymbol{\zeta}_{t_{o}}} M_{t_{o}} \succ=\prec \eta_{t, t_{o}} e^{\boldsymbol{\lambda} \cdot \boldsymbol{\zeta}_{t_{o}}} \succ_{Q}
$$

But $\eta_{t, t_{o}}$ is by construction independent of the history of $\boldsymbol{\zeta}_{t^{\prime}}$ for $t^{\prime} \leq t_{o}$:

$$
\prec e^{\boldsymbol{\lambda} \cdot \boldsymbol{\zeta}_{t+t_{o}}} \succ_{Q}=\prec \eta_{t, t_{o}} \succ_{Q} \prec e^{\boldsymbol{\lambda} \cdot \boldsymbol{\zeta}_{t_{o}}} \succ_{Q}=e^{\frac{\|\boldsymbol{\lambda}\|^{2} t}{2}} e^{\frac{\|\boldsymbol{\lambda}\|^{2} t_{o}}{2}}
$$

i.e. independent increments have Gaussian distribution.

Girsanov theorem is very useful for the following reason. Consider the Ito stochastic differential equations

$$
d \boldsymbol{\xi}_{t}=\boldsymbol{b}_{t} d t+d \boldsymbol{\omega}_{t}
$$

and

$$
d \boldsymbol{\zeta}_{t}=\tilde{\boldsymbol{b}}_{t} d t+d \boldsymbol{\omega}_{t}
$$

such that

$$
\left.d \omega_{t}^{i}:=\sigma_{t}^{i j} d w_{t}^{j} \quad \quad \text { (alternative notation: } d \boldsymbol{\omega}_{t}=\boldsymbol{\sigma}\left[d \boldsymbol{w}_{t}\right]\right)
$$

both satisfying the hypotheses of the existence and uniqueness theorem for $t \in[0, T]$. Then, if $P_{\boldsymbol{\xi}_{t}}$ and $P_{\boldsymbol{\zeta}_{t}}$ denote the probability measures over the realizations respectively of $\boldsymbol{\xi}_{t}$ and $\boldsymbol{\zeta}_{t}$ they satisfy

$$
\frac{d P_{\boldsymbol{\zeta}_{t}}}{d P_{\boldsymbol{\xi}_{t}}}=e^{\int_{0}^{t} d \boldsymbol{w}_{s} \cdot \phi_{t}-\int_{0}^{t} d s \frac{\left\|\boldsymbol{\phi}_{t}\right\|^{2}}{2}}
$$

for

$$
\tilde{\boldsymbol{b}}_{t}=\boldsymbol{b}_{t}+\boldsymbol{\sigma}[\boldsymbol{\phi}]_{t}
$$

Example 2.1 (Wiener process with constant drift). Consider the process

$$
\begin{aligned}
& d \xi_{t}=v d t+\sigma d w_{t} \\
& \xi_{0}=x_{o}
\end{aligned}
$$

for $v, \sigma \in \mathbb{R}_{+}$and

$$
\begin{align*}
& d \zeta_{t}=\sigma d w_{t} \\
& \zeta_{0}=x_{o} \tag{2.2}
\end{align*}
$$

By Girsanov theorem

$$
\frac{d P_{\xi_{t}}}{d P_{\zeta_{t}}}=e^{\int_{0}^{t} d w_{s} \frac{v}{\sigma}-\int_{0}^{t} d s \frac{v^{2}}{2 \sigma^{2}}}=e^{w_{t} \frac{v}{\sigma}-\frac{v^{2} t}{2 \sigma^{2}}}
$$

so that

$$
\prec e^{\lambda \xi_{t}} \succ_{Q}=e^{\lambda x_{o}} \prec e^{\lambda \zeta_{t}} e^{w_{t} \frac{v}{\sigma}-\frac{v^{2} t}{2 \sigma^{2}}} \succ_{P}
$$

where Q denotes the measure on the paths of ξ_{t} and P the measure on the paths of ζ_{t}. This latter measure we can relate to that of the Wiener process through

$$
\begin{equation*}
\zeta_{t}=\sigma w_{t} \tag{2.3}
\end{equation*}
$$

so that

$$
\begin{equation*}
\prec e^{\lambda \xi_{t}} \succ_{Q}=e^{\lambda x_{o}} \prec e^{\lambda \sigma w_{t}} e^{w_{t} \frac{v}{\sigma}-\frac{v^{2} t}{2 \sigma^{2}}} \succ \tag{2.4}
\end{equation*}
$$

the average on the right hand side being with respect to the paths of the Wiener-process w_{t}

$$
\begin{equation*}
\prec e^{\lambda \xi_{t}} \succ_{Q}=e^{\lambda x_{o}-\frac{v^{2} t}{2 \sigma^{2}}} \prec e^{\left(\lambda \sigma+\frac{v}{\sigma}\right) w_{t}} \succ=e^{\lambda x_{o}-\frac{v^{2} t}{2 \sigma^{2}}} e^{\left(\lambda \sigma+\frac{v}{\sigma}\right)^{2} \frac{t}{2}}=e^{\lambda\left(x_{o}+v t\right)+\frac{\lambda^{2} \sigma^{2} t}{2}} \tag{2.5}
\end{equation*}
$$

References

[1] M. Avellaneda, Ito processes, continuous-time martingales and Girsanov's Theorem, lecture notes, http://www.math.nyu.edu/faculty/avellane/rm3.ps 1
[2] L.C. Evans, An Introduction to Stochastic Differential Equations, lecture notes, http://math.berkeley.edu/~evans/2

