1 Introduction

These notes follow chapter 6 of [2].

2 Stopping time
Definition 2.1 (Stopping time). A random variable
7:Q — [0, 0]
is called a stopping time with respect to a filtration of o-algebras {Fy |t > 0} provided
{r<t}e R forall t> 0

In other words, the set of all w € Q 7 (w) < ¢ is F;-measurable. The stopping time 7 is allowed to take on the
value 400, and also that any constant 7 = %, is a stopping time. Furthermore it enjoys the following properties

Proposition 2.1 (Properties of a stopping time). Let T and T9 stopping times with respect to {F; |t > 0}. Then
i{r <t}eFrand{r =t} € Fiforallt > 0
ii 71 \Toand TV To are stopping times
Proof. We set
a 1
< t; = <t——
r<o=Ufr=i-1}
k=1
i.e. {7 < t} occurs if there exists a k& > 1 such that the event {7 <t — 1/k} occurs. But

{TSt—l/l{?} S ‘Ft— g./—"t

1
k
Similarly

{Tl/\TQS t}:{7'1§ t}U{TQS t}e}}
and

{nvr<tt={n<tin{n<tteFH
O

The following theorem evinces the relevance of stopping times for the study of stochastic differential equations
Theorem 2.1 (Set hitting by a diffusion). Let €, solution of the stochastic differential equation

d€, = b (&,,1) dt + o[dwy]

51,0 = Lo

satisfying the hypotheses of the theorem of existence and uniquensess. Let also A be a non-empty open or closed
subset of R%. Then

T:=1inf{t|& € A}

is a stopping time with the convention T = oo if €, ¢ A for all t.



Proof. Lett > 0 we need to show that {7 < ¢t} € F;. To that goal we introduce the sequence {t;};~, dense on R
and consider separately the cases when A is close and open.

e A s open. The event that there exists a ¢; less than ¢ such that £, belongs to A reads

{r<ty={J{& €4} :)\

t;<t

and is therefore the union of events belonging to J;, thus proving the claim.
e Aisclosed. Let
d(x,A) := distance (x, A)
and define the open sets

A, = {m|d(:c,A) < 1}

n

The event

{Tﬁt}:ﬂ U{EtiEAn}

k=11t;<t

also belongs to F; as the {Sti € An}’s do.

Remark 2.1. The random variable
T=sup{t|& € A}

is not in general a stopping time as in general it is not F; measurable but may depend on the history of & for times
later than .

3 Applications of the stopping time

Let ¢, be the fundamental solution of the stochastic differential equation
del = b (&, ,t) dt + oY (&, ,t) dw! 3.1)

which we assume to globally satisfy the hypotheses of the theorem existence and uniqueness of solutions. In other
words for any initial data (x, ,t,) we have that

IS ACTRY)
for t > t, solves (3.1). To (3.1) also we associate the generator
1 ..
Lo =b(x,t) Op + 59” (x,t) 04 Oy
with

gl = itk



3.1 Exit time form a domain

Let A a smooth bounded open subset of R? Let us suppose that the drift and diffusion fields in (3.1) are time-

independent
b(xz,t) =b(x) & o(xz,t) =0 (x)
and let 2z € R?. Then the stopping time
Tz = inf {t > 0|¢, (x,0) € OA}

specifies the first exit time from A.
Proposition 3.1 (Average exit time). Under the above hypotheses, for any x € A we have

< Tp == f ()
for

Lof(x)=-1

f (m) |9:€A =0
More generally for we have

< T == gn (x)

for go(x) =1
Lot (2) = —n1 g1 ()

gn () [oen = 0

Proof. Let
F(n) = F@)+ [Tdsgo s @)+ [ dula? @)0,8 (0

if

L. f (b)) =1
and

F @) loen =0
we have

o= f (@) + /0 " dwl o' (§,) 0, f ()

Taking averages yields the claim. More generally for any ¢t < 7,

T

g (1) = — /t " ds £, gn (¢s) — / dwl % () Dy ()

t
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(3.2)



Lagn () = —ngn-1(x)

Gn—1 () |zeon =0

generates the recursion for

In (Po) = gn ()

whence

gn (ac) =n / ds / d51£¢51gn71 (¢51)
0 s
+n/ ds/ dws, 0" (bs,) gs, gn1 (bs,) — / dw} 0" ($.) 0590 ($2)
0 s 0

Upon iterating n-times, we get into

Tx -2 Tx Tx
gn () =T(n+ 1)/ dsy H/ dsk+1/ dsy,
0 k=1 Sk Sn—1

n

T(n+1) [ y o
mﬁ s [ as H / Ao / e (8.) 05,001 (6) - | awie (6050 (@)

Taking the average we get into

=1

whence the claim. O]

In order to encompass the time-inhomogeneous case, we can compute the statistics of the first exit time from
an open subset of R? starting from the forward Kolmogorov equation (Fokker-Planck equation). Consider for any
x, € A the problem with absorbing boundary conditions

4 1 g
Op + 0, (b p) = iﬁziﬁxj (9"p) (3.6a)
Placoa =0 (3.6b)
— 5@ (p _
11§1¢rt13p 0 (x —x,) (3.6¢)

The interpretation of absorbing boundary conditions is of removing from the transition probability all those trajectories
that for times s € [t,, t] reached the boundary. Thus if we define

Tt = i?f {t < t1]¢y, (x,t) € OA} 3.7)
1

we get into
P (Tg, 1, > 1) = /dd:cpE (x,t| 0, to)
A

4



whence we infer

pTImfo (t) = _at/ ddxpﬁ ($7t | moato)
A

It follows immediately that

o0 o0
< (Tagt, — to)" == / dt (t —to)" Pry, .., (1) = —/ dtt" 8t/ ddalrpE (x,t+to| To, to)
to 0 A

and therefore

o
< (Tw, —to)" ==mn /0 dt " /Addxpg (x,t+to|Tosto) = gn(To,to)

(3.8)

for x the characteristic function of the set A. We can derive the evolution equation for the average by differentiating

with respect to t,:

O, gn(To,to) =n / dtt" 1 (9, — Smo)/ ddxpE (x,t+to]|xo, o)
0 A

Inspection of the result allows us to recognize that

at,,gn(woa to) =N gn—l(mm to) - Emogn(wm to)

which is the result we set ut to obtain. Note that the solution of (3.9) can be rewritten as

D
In (To, o) = / ds /d d*zn gn_1 (@, 5 +to) P (T, 5+ to|To, to)
0 R
since we can always assume

In (Lo, 1) =0 Vx, € Rd/A

3.2 Hitting one part of a boundary first

Suppose now that the boundary 9A of a A a smooth bounded open subset of R? can be decomposed as

O0A =B + By

with B; ¢ = 1,2 smooth. To any x, € A we can associate the stopping time
o, = inf {t > 0] ¢, (x) € B;} i=1,2
through the mapping defined by the fundamental solution of (3.1).
Proposition 3.2. The probability that ¢,(x,) hits first By is specified by the solution of
Leu(x)=0

u (@) |zep, =1 & u (@) lzen, =0

(3.9)

(3.10)

(3.11)



Proof. Let

t

t
w(@el@e) = ul@o) + [ s u(@)+ [ dulol (8)0,u(6)
If we require
Lou(x) =0

together with the hypothesized boundary conditions, taking the average yields for t = 7, .

P(@M%eBQ:u@)

3.2.1 Recurrence of the Wiener process

Let w; a d-dimensional Wiener motion

& = [[wil

then
de, = ddt +2/g 8 00t
|||

The stochastic process

_ tw, - dw,

7)o e
enjoys the following properties
e Vanishing first moment
<n==0

e Second moment linearly growing in time
t
o — / ds =t
0

e Gaussian statistics.

e Independent increments

_ /t+to Ws - dws
e e = el

o

Hence 7; is statistically equivalent to a Wiener process:

d& = ddt + 2v/&dw,



We can ask whether the Wiener process leaves a ball of radius I around the origin before hitting the origin itself. To
answer such question we need to solve for some 0 < e <1

0 =ddyu+2zd%u (3.13a)

u(e) =0 & u(R) =1 (3.13b)

A straightforward calculation yields

R
leé a d # 2
u(x) =P (T6|.7} < TR|.Z’) = | R2 _18 :
nR—-—Inz
o —9
InR—1Ine d
We observe
2\ 1/2
limP(Tg‘xSTR‘gc): 1_(5) d=1
£l0 0 d> 2

In two dimensions, nevertherless

}%ITI{.IOP (7_5|ac < TR|ac) =1

meaning that the process is recurrent in the sense that if G is any open set

P(|lw|]” € G) =1

Appendix

A Alternative check of the recursion relations for exit times
Iterating the recursion equations as

In (To,to) =

2 oo
H/ ds; /d dlzin (n —1) gn_o (T2, 52 4 51+ to) Pe (T2, 52 + 81+ to|T1, 81 + o) D (T1, 81 + to|To, to)
i=170 R

we get by Chapman-Kolmogorov
g'fl (w07 to) =

2 0
H/ ds; /ddd332n(n_1)gn2 ($2,82+81—|—t0) P, ($2,52—|—$1—|—t0|$0,t0)
=1 0 R

Upon setting

S =81+ 89



the time integral becomes
gn (mm to)
o0 o0
= / dsy / ds/ den (n—1) gn_s (x,s+t,) Pe (T, 8+ 10| To,sto)
0 s1 Rd
oo
=n(n—1) / dss / A% gn_o (x, 5+ t,) Pe (2,5 + 10| o, to)
0 R
Repeating the calculation until
9o (,1) = xa ()

we recover (3.8).
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