
1 Introduction

These notes follow chapter 6 of [2].

2 Stopping time

Definition 2.1 (Stopping time). A random variable

τ : Ω→ [0 ,∞]

is called a stopping time with respect to a filtration of σ-algebras {Ft | t ≥ 0} provided

{τ ≤ t} ∈ Ft for all t ≥ 0

In other words, the set of all ω ∈ Ω τ (ω) ≤ t is Ft-measurable. The stopping time τ is allowed to take on the
value +∞, and also that any constant τ = to is a stopping time. Furthermore it enjoys the following properties

Proposition 2.1 (Properties of a stopping time). Let τ1 and τ2 stopping times with respect to {Ft | t ≥ 0}. Then

i {τ < t} ∈ Ft and {τ = t} ∈ Ft for all t ≥ 0

ii τ1 ∧ τ2 and τ1 ∨ τ2 are stopping times

Proof. We set

{τ < t} =

∞⋃
k=1

{
τ ≤ t− 1

k

}
i.e. {τ < t} occurs if there exists a k ≥ 1 such that the event {τ ≤ t− 1/k} occurs. But

{τ ≤ t− 1/k} ∈ Ft− 1
k
⊆ Ft

Similarly

{τ1 ∧ τ2 ≤ t} = {τ1 ≤ t} ∪ {τ2 ≤ t} ∈ Ft

and

{τ1 ∨ τ2 ≤ t} = {τ1 ≤ t} ∩ {τ2 ≤ t} ∈ Ft

The following theorem evinces the relevance of stopping times for the study of stochastic differential equations

Theorem 2.1 (Set hitting by a diffusion). Let ξt solution of the stochastic differential equation

dξt = b (ξt, t) dt+ σ[dwt]

ξto = xo

satisfying the hypotheses of the theorem of existence and uniquensess. Let also A be a non-empty open or closed
subset of Rd. Then

τ := inf {t | ξt ∈ A}

is a stopping time with the convention τ =∞ if ξt ∈/ A for all t.
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Proof. Let t ≥ 0 we need to show that {τ ≤ t} ∈ Ft. To that goal we introduce the sequence {ti}∞i=1 dense on R+

and consider separately the cases when A is close and open.

• A is open. The event that there exists a ti less than t such that ξti belongs to A reads

{τ ≤ t} =
⋃
ti≤ t

{
ξti ∈ A

}
A

xo

and is therefore the union of events belonging to Ft, thus proving the claim.

• A is closed. Let

d (x,A) := distance (x,A)

and define the open sets

An =

{
x | d(x ,A) <

1

n

}
The event

{τ ≤ t} =
∞⋂
k=1

⋃
ti≤t

{
ξti ∈ An

}
also belongs to Ft as the

{
ξti ∈ An

}
’s do.

Remark 2.1. The random variable

τ̃ = sup {t | ξt ∈ A}

is not in general a stopping time as in general it is not Ft measurable but may depend on the history of ξ for times
later than t.

3 Applications of the stopping time

Let φt be the fundamental solution of the stochastic differential equation

dξit = bi (ξt , t) dt+ σij (ξt , t) dw
j
t (3.1)

which we assume to globally satisfy the hypotheses of the theorem existence and uniqueness of solutions. In other
words for any initial data (xo , to) we have that

ξt = φt (xo , to)

for t ≥ to solves (3.1). To (3.1) also we associate the generator

Lx := b (x, t) · ∂x +
1

2
gij (x, t) ∂xi∂xj

with

gij = σikσjk

2



3.1 Exit time form a domain

Let A a smooth bounded open subset of Rd Let us suppose that the drift and diffusion fields in (3.1) are time-
independent

b (x, t) = b (x) & σ (x, t) = σ (x)

and let x ∈ Rd. Then the stopping time

τx = inf {t ≥ 0|φt (x , 0) ∈ ∂A} (3.2)

specifies the first exit time from A.

Proposition 3.1 (Average exit time). Under the above hypotheses, for any x ∈ A we have

≺ τx �= f (x)

for

Lxf (x) = −1

f (x) |x∈A = 0

More generally for we have

≺ τnx �= gn (x)

for g0(x) = 1

Lxgn (x) = −n gn−1 (x)

gn (x) |x∈A = 0

Proof. Let

f
(
φτx
)

= f (x) +

∫ τx

0
dsLφs

f (φs) +

∫ τx

0
dwjs σ

ij (φs) ∂φisf (φs)

if

Lφs
f (φs) = −1

and

f (x) |x∈A = 0

we have

τx = f (x) +

∫ τx

0
dwjs σ

ij (φs) ∂φisf (φs)

Taking averages yields the claim. More generally for any t ≤ τx

gn (φt) = −
∫ τx

t
dsLφs

gn (φs)−
∫ τx

t
dwjs σ

ij (φs) ∂φisgn (φs)
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Lxgn (x) = −n gn−1 (x)

gn−1 (x) |x∈∂A = 0

generates the recursion for

gn (φ0) = gn (x)

whence

gn (x) = n

∫ τx

0
ds

∫ τx

s
ds1Lφs1

gn−1
(
φs1
)

+n

∫ τx

0
ds

∫ τx

s
dws1σ

ij
(
φs1
)
∂φis1

gn−1
(
φs1
)
−
∫ τx

0
dwjs σ

ij (φs) ∂φisgn (φs)

Upon iterating n-times, we get into

gn (x) = Γ(n+ 1)

∫ τx

0
ds1

l−2∏
k=1

∫ τx

sk

dsk+1

∫ τx

sn−1

dsn

−
n∑
l=1

Γ(n+ 1)

Γ(n− l + 1)

∫ τx

0
ds

l−2∏
k=1

∫ sk

0
dsk+1

∫ τx

sl−1

dwslσ
ij
(
φsl
)
∂φisl

gn−l
(
φsl
)
−
∫ τx

0
dwjs σ

ij (φs) ∂φisgn (φs)

Taking the average we get into

≺ τnx �= gn (x)

whence the claim.

In order to encompass the time-inhomogeneous case, we can compute the statistics of the first exit time from
an open subset of Rd starting from the forward Kolmogorov equation (Fokker-Planck equation). Consider for any
xo ∈ A the problem with absorbing boundary conditions

∂tp+ ∂xi( b
i p) =

1

2
∂xi∂xj (g

ijp) (3.6a)

p|x∈∂A = 0 (3.6b)

lim
t↓to

p = δ(d)(x− xo) (3.6c)

The interpretation of absorbing boundary conditions is of removing from the transition probability all those trajectories
that for times s ∈ [to, t] reached the boundary. Thus if we define

τx,t = inf
t1

{
t ≤ t1|φt1 (x , t) ∈ ∂A

}
(3.7)

we get into

P (τxo,to ≥ t) =

∫
A
ddx p

ξ
(x, t |xo, to)
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whence we infer

pτxo,to (t) = −∂t
∫
A
ddx p

ξ
(x, t |xo, to)

It follows immediately that

≺ (τxo,to − to)n �=

∫ ∞
to

dt (t− to)n pτxo,to (t) = −
∫ ∞
0

dt tn ∂t

∫
A
ddx p

ξ
(x, t+ to |xo, to)

and therefore

≺ (τxo − to)n �= n

∫ ∞
0

dt tn−1
∫
A
ddx p

ξ
(x, t+ to |xo, to) = gn(xo, to) (3.8)

for χ the characteristic function of the set A. We can derive the evolution equation for the average by differentiating
with respect to to:

∂togn(xo, to) = n

∫ ∞
0

dt tn−1 (∂t − Lxo)

∫
A
ddx p

ξ
(x, t+ to |xo, to)

Inspection of the result allows us to recognize that

∂togn(xo, to) = −n gn−1(xo, to)− Lxogn(xo, to) (3.9)

which is the result we set ut to obtain. Note that the solution of (3.9) can be rewritten as

gn (xo, to) =

∫ ∞
0

ds

∫
Rd

ddxn gn−1 (x, s+ to) pξ (x, s+ to|xo, to)

since we can always assume

gn (xo, to) = 0 ∀xo ∈ Rd/A (3.10)

3.2 Hitting one part of a boundary first

Suppose now that the boundary ∂A of a A a smooth bounded open subset of Rd can be decomposed as

∂A = B1 + B2 B1B2
xo

with Bi i = 1, 2 smooth. To any xo ∈ A we can associate the stopping time

τBi|x = inf {t ≥ 0 |φt (x) ∈ Bi} i = 1, 2 (3.11)

through the mapping defined by the fundamental solution of (3.1).

Proposition 3.2. The probability that φt(xo) hits first B1 is specified by the solution of

Lx u (x) = 0

u (x) |x∈B1 = 1 & u (x) |x∈B2 = 0
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Proof. Let

u (φt (xo)) = u (xo) +

∫ t

0
dsLφs

u (φs) +

∫ t

0
dwjs σ

ij (φs) ∂φisu (φs)

If we require

Lxu (x) = 0

together with the hypothesized boundary conditions, taking the average yields for t = τB1:x

P
(
φτB1|xo

∈ B1

)
= u (x)

3.2.1 Recurrence of the Wiener process

Let wt a d-dimensional Wiener motion

ξt =
∣∣∣∣w2

t

∣∣∣∣
then

dξt = d dt+ 2
√
ξt
wt · dwt

||wt||

The stochastic process

ηt =

∫ t

0

ws · dws

||ws||

enjoys the following properties

• Vanishing first moment

≺ ηt �= 0

• Second moment linearly growing in time

≺ η2t �=

∫ t

0
ds = t

• Gaussian statistics.

• Independent increments

ηt+to − ηto =

∫ t+to

to

ws · dws

||ws||

Hence ηt is statistically equivalent to a Wiener process:

dξt = d dt+ 2
√
ξtdwt
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We can ask whether the Wiener process leaves a ball of radius R around the origin before hitting the origin itself. To
answer such question we need to solve for some 0 < ε < 1

0 = d ∂xu+ 2x∂2xu (3.13a)

u (ε) = 0 & u (R) = 1 (3.13b)

A straightforward calculation yields

u(x) = P
(
τε|x ≤ τR|x

)
=


R1− d

2 − x1−
d
2

R1− d
2 − ε1−

d
2

d 6= 2

lnR− lnx

lnR− ln ε
d = 2

We observe

lim
ε↓0

P
(
τε|x ≤ τR|x

)
=

 1−
( x
R

)1/2
d = 1

0 d ≥ 2

In two dimensions, nevertherless

lim
R↑∞

P
(
τε|x ≤ τR|x

)
= 1

meaning that the process is recurrent in the sense that if G is any open set

P (||wt||2 ∈ G) = 1

Appendix

A Alternative check of the recursion relations for exit times

Iterating the recursion equations as

gn (xo, to) =
2∏
i=1

∫ ∞
0

dsi

∫
Rd

ddxi n (n− 1) gn−2 (x2, s2 + s1 + to) pξ (x2, s2 + s1 + to|x1, s1 + to) pξ (x1, s1 + to|xo, to)

we get by Chapman-Kolmogorov

gn (xo, to) =
2∏
i=1

∫ ∞
0

dsi

∫
Rd

ddx2 n (n− 1) gn−2 (x2, s2 + s1 + to) pξ (x2, s2 + s1 + to |xo, to)

Upon setting

s = s1 + s2
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the time integral becomes

gn (xo, to)

=

∫ ∞
0

ds1

∫ ∞
s1

ds

∫
Rd

ddxn (n− 1) gn−2 (x, s+ to) pξ (x, s+ to |xo, to)

= n (n− 1)

∫ ∞
0

ds s

∫
Rd

ddx gn−2 (x, s+ to) pξ (x, s+ to |xo, to)

Repeating the calculation until

go (x, t) = χA (x)

we recover (3.8).
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