1 Introduction

The topics of this lecture are covered by chapter 5 of [1].

2 Existence and uniqueness theorem
Theorem 2.1 (Existence and uniqueness). Suppose that for some T' € R
b:RYx [0,7] — R?
and
o : R4 [0, T] — RP*™
are continuous and satisfy the following conditions in the Euclidean norm
Ib(z,t) —b(y, 1) || < Cllz —yl| & o (z,t) —o (y, 1) [| < Cllz -yl
and
16 (2, 8) || < C (1 +[|z[]) & llo (2, ) || < C (1 +[z]])
forall 0 < t < T and some positive constant C. Let also §,,
£ : Q- R
a random variable such that
<P =< o0

Furthermore &, is independent of the o-algebra VW generated by a given m-dimensional Wiener process for t > 0.
Then, there exists a unique solution of

d¢, = b(&,, t)dt + o (&, t)[dw] (2.1a)

& =256 (2.1b)

Uniqueness here means that any square integrable &, and ét with continuous paths, satisfying , then for
al0<t<T

Proof. Existence

We start by constructing a Picard type sequence of approximations to the solution

¢ =g,

t t
Sgl) =£, +/ dsb (Ego), s) —I—/ dso (égo), s) [dws] (2.2a)
0 0



§n+1) = Eo + /Ot dsb <£g”)73> + /Ot dso (é’g")’ s) [dws}

The aim is to prove that the sequence in mean square and almost surely converges in the sense of Cauchy. Namely if
we set

dOt) =1
and forn > 0
@) =< g €I -

then we have

g < (T
SRCES )

for some M > 0. The claim is proved by induction:

e First we inspect

2

©w <] [ sb(60) + [ dser (60w -

0

[ sbiens)

0

2

t
<2< ‘ - +2/ ds < tr(o0’)(&,5) -
0

having so bounded from above the cross product. In order to estimate the first term we can use the Cauchy-
Schwartz inequality:

2

t t t
2
/Odsb@o,s) »s/g ds < |b (&) | >/Ods

The Lipschitz condition yields upper bounds on the remaining expressions:

—< ‘

t t
4 (1) §2/ ds L°T < (14 |1&,]])° +2/ ds L2 < (1+]€,])? =< Mt
0 0
for
M>4L2A+T) < 1+ |[&,])° =

We can then proceed by induction.

e Then we suppose that

holds true.



e The last step is to observe that

d(n+1)(t) _

. ' /otds b (Eg’%) _b<§gn1>,s)]+/0

satisfies the inequality

2
-

t

ds [ (sg’”, s) e (gg"*), 5)][de]

d("“)(t)§2L2(1+T)/ ds < [|€) — g2 -

M s)" _2L2(1+T)M”t”+1
I'(n) I'(n+1)

2 "
§2L(1+T)/Od

whence finally we are entitled to conclude

MnJrl tn+1
)y « 22 %
0 = TaT

The bound yields mean square convergence, but it is is not sufficient as such to prove the almost sure convergence of
the Picard’s iteration. Cauchy-Schwartz inequality, however, gives us

(n+1) (n) <
max (1§ &l <

2

T
2TL2 dt (TL) _ (nfl) 2 2
/0 <& =& VI = 42 max

T
/0 [o (gg”), 5) -0 (Eg"_l), s)][dws]

We have proved however that for martingales

< max |[|&]]P =< max
0<t<T 0<t<Tp

e

In consideration of such martingale inequality, we attain the bound
M
I'(n)

which on its turn entitles us to use invoke Borel-Cantelli lemma. Namely if we pick any 0 < € < 1 and observe by
Cebisev that

T
(n+1) (n) < (n) _ n D2
< max 1€ ||>_c*/0 dt < 1€ <ot

—2 Mt n+1
P (a6 < €] > &) <20 ¢ e (1D g2 < 0 E MO
0<t<T 0<t<T I'(n+1)

then

P ( max & — ¢ > +) <00
n=0

0<t<T

We conclude that

n—1
0) + Z ( gn—&-l gtn> nToo £ 0.5,
n=0



with
& =€, 4-7111Tr(1>r1O {/Ot dsb (Sg”),s> + /Ot dso (Egn),s> [dws]}
t t
6t [ dsbEn) + [ dso € iw)

having used the dominated convergence theorem. It remains now to show that the solution belongs to (2 (Q x [0, 7).
There result follows from bounds similar to the above:

2 t 2 t 2
<WﬁmH>§3<mﬂ>+3<H/@b@@ﬁ)>»w<w/@a@@ﬁﬁ@@ -
0 0
whence
2 t 2 -
< [[e™ ]| =<3 <l - +6 2T + 1)/ ds < 1+ [[e||" =< Ce
0
by recursion for some C > 0. Passing to the limit yields the claim.
Uniqueness
Suppose there is an Et also satisfying the stochastic differential equation. Then
~ 112 t B t ~ 2
= Hﬁt - €t ‘ —== ‘ / ds [b (557 S) -b (557 S)] + / ds [O’ (Esv 5) -0 (Esa S)Hdws] -
0 0

By the same inequalities as above there is a positive constant i > 0 such that

~ 112 ¢ ~ 112
= Hgt_EtH < K/ ds < "Et_gt" ~
0
Gronwall lemma (see appendix [A) for a function vanishing at the lower boundary allows us to conclude that
ét =&

in mean square. The martingale inequality ensures in such a case that the same equality holds almost surely. 0

2.1 Example: absence of Lipschitz continuity

Consider the ordinary differential equation:

§=0¢?
The field

f=Cal/3

is not differentiable in zero therefore not Lipschitz continuous there. As a consequence the equation has multiple
solutions

¢ 0 t<t,
7Y 3?2 >,

for arbitrary t,,.



3 Solution by iteration

If b and o are smooth

t t
(=€, + /0 dsb(E,,s) + /0 o (£, 5)dw,]

— €, b(E,0) ¢+ o€, 0)dwr] + [ s | vt [ t | dot@nuidw,

:50+b(go,0)t+a(50,0)[dwt]+/0 db(€.. ) (t—s)—l—/o dor (s, 5)[wi — ws] 3.1)

We then apply Ito lemma to b and o and iterate. In such a way the solution is constructed as a
Wt.

Example 3.1 (1d-linear case). Consider the Ito SDE

dft = th + U&dwt
T
we can remove the drift by setting
ot
§e = &em

The new process ft is related to the original by a function independent of the Wiener process
lemma

d(&me) = (d&)m + &dme+ < &y, dny >
(< o, @ > is the quadratic co-variation) reduces for

’rh:ef

to the standard Leibniz rule. We find

t

-t -, t  ~eT
d(&er) = (d&)er +&—
The new Ito stochastic differential equation is
dé; = o &dwy

If we apply the recursion equations (3.1)) we get into

t S
5t=50+ofowt+a/ dws/ dE,,
0 0

power series in ¢ and

(3.2)

. Hence, Ito calculus

B B - t S t S s2
=&+ o&ow + o2&, / dw / dws, + o / dws / dws,, / dés,
0 0 0 0 0

Repeating for an arbitrary number of steps
~ N > ) t i—1 55
G=6+6> 0 [aw I [ au,
i=1 0 j=170

5

(3.3)



We have proved in a previous lecture that

t i—1 P
/ dws, H/ dws, = hi(wy,t)
0 =170
with h; the Hermite polynomial
tn dn zz_ 22 1 dn A2t
hilz.t) = — Zr_z a A
@)=y a0 TG avl,

Upon inserting in (3.3)), we get into

o2
@{1+§:Jhw“ }:@fm—ﬁ

and consequently

t o2t
& =€ er TV
The same result is straightforwardly obtained by converting (3.2)) to Stratonovich form

gy = (1 - M) ftﬂ + 0 & dwy

and by integrating it according to the usual rules of calculus

g — ¢, c(177F) Frow

Appendix

A  Gronwall lemma
Lemma A.1 (Gronwall). Let
¢:[O7T]_>R+ & f[())T]_)R-‘r

and let Cy > 0 a real constant. If forall0 < t < T

t
@§%+A%ﬁ%

then
¢y < Coelods I

Proof. First observe

%Sft@bt



¢; may vanish, so we cannot divide both side by ¢; in order to couch the left hand side in the form of a logarithmic
derivative. Instead we set

t
@=%+/mﬁ@
0

and obtain
dd
Tt:ft¢t§ ft ©¢ Py < Py
t
Then
4 ftor] <o
implying that

e dods s d, < ) <
and therefore (the exponential is strictly positive under current hypotheses)

o, < Oy ef(f ds fs
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