
1 Introduction

The topics of this lecture are covered by chapter 5 of [1].

2 Existence and uniqueness theorem

Theorem 2.1 (Existence and uniqueness). Suppose that for some T ∈ R+

b : Rd × [0, T ]→ Rd

and

σ : Rd×d × [0, T ]→ Rd×m

are continuous and satisfy the following conditions in the Euclidean norm

||b (x, t)− b (y, t) || < C ||x− y|| & ||σ (x, t)− σ (y, t) || < C ||x− y||

and

||b (x, t) || < C (1 + ||x||) & ||σ (x, t) || < C (1 + ||x||)

for all 0 ≤ t ≤ T and some positive constant C. Let also ξo

ξo : Ω→ Rd

a random variable such that

≺ ||ξo||2 �< ∞

Furthermore ξo is independent of the σ-algebraW generated by a given m-dimensional Wiener process for t ≥ 0.
Then, there exists a unique solution of

dξt = b(ξt, t)dt+ σ(ξt, t)[dwt] (2.1a)

ξ0 = ξo (2.1b)

Uniqueness here means that any square integrable ξt and ξ̃t with continuous paths, satisfying (2.1a), (2.1b) then for
all 0 ≤ t ≤ T

ξt = ξ̃t a.s.

Proof. Existence

We start by constructing a Picard type sequence of approximations to the solution

ξ
(0)
t := ξo

ξ
(1)
t := ξo +

∫ t

0
ds b

(
ξ(0)
s , s

)
+
∫ t

0
dsσ

(
ξ(0)
s , s

)
[dws] (2.2a)
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. . .

ξ
(n+1)
t := ξo +

∫ t

0
ds b

(
ξ(n)
s , s

)
+
∫ t

0
dsσ

(
ξ(n)
s , s

)
[dws]

The aim is to prove that the sequence in mean square and almost surely converges in the sense of Cauchy. Namely if
we set

d(0)(t) := 1

and for n ≥ 0

d(n+1)(t) =≺ ||ξ(n+1)
t − ξ(n)

t ||2 �

then we have

d(n+1)(t) ≤ (M t)n+1

Γ(n+ 1)

for some M > 0. The claim is proved by induction:

• First we inspect

d(1)(t) =≺
∣∣∣∣∣∣∣∣∫ t

0
ds b (ξo, s) +

∫ t

0
dsσ (ξo, s) [dws]

∣∣∣∣∣∣∣∣2 �
≤ 2 ≺

∣∣∣∣∣∣∣∣∫ t

0
ds b (ξo, s)

∣∣∣∣∣∣∣∣2 � +2
∫ t

0
ds ≺ tr(σσ†)(ξo, s) �

having so bounded from above the cross product. In order to estimate the first term we can use the Cauchy-
Schwartz inequality:

≺
∣∣∣∣∣∣∣∣∫ t

0
ds b (ξo, s)

∣∣∣∣∣∣∣∣2 �≤ ∫ t

0
ds ≺ ||b (ξo, s) ||2 �

∫ t

0
ds

The Lipschitz condition yields upper bounds on the remaining expressions:

d(0)(t) ≤ 2
∫ t

0
dsL2T ≺ (1 + ||ξo||)2 � +2

∫ t

0
dsL2 ≺ (1 + ||ξo||)2 �≤M t

for

M ≥ 4L2(1 + T ) ≺ 1 + ||ξo||2 �

We can then proceed by induction.

• Then we suppose that

d(n)(t) ≤ (M t)n

Γ(n)

holds true.
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• The last step is to observe that

d(n+1)(t) =

≺
∣∣∣∣∣∣∣∣∫ t

0
ds [b

(
ξ(n)
s , s

)
− b

(
ξ(n−1)
s , s

)
] +
∫ t

0
ds [σ

(
ξ(n)
s , s

)
− σ

(
ξ(n−1)
s , s

)
][dws]

∣∣∣∣∣∣∣∣2 �
satisfies the inequality

d(n+1)(t) ≤ 2L2(1 + T )
∫ t

0
ds ≺ ||ξ(n)

s − ξ(n−1)
s ||2 �

≤ 2L2(1 + T )
∫ t

0
ds

(M s)n

Γ(n)
=

2L2(1 + T )Mn tn+1

Γ(n+ 1)

whence finally we are entitled to conclude

d(n+1)(t) ≤ Mn+1 tn+1

Γ(n+ 1)

The bound yields mean square convergence, but it is is not sufficient as such to prove the almost sure convergence of
the Picard’s iteration. Cauchy-Schwartz inequality, however, gives us

max
0≤t≤T

||ξ(n+1)
t − ξ(n)

t || ≤

2T L2

∫ T

0
dt ≺ ||ξ(n)

t − ξ
(n−1)
t ||2 � +2 max

0≤t≤T

∣∣∣∣∣∣∣∣∫ T

0
[σ
(
ξ(n)
s , s

)
− σ

(
ξ(n−1)
s , s

)
][dws]

∣∣∣∣∣∣∣∣2
We have proved however that for martingales

≺ max
0≤ t≤T

||ξt||p �≤ max
0≤ t≤T

p

p− 1
≺ ||ξt||p �

In consideration of such martingale inequality, we attain the bound

≺ max
0≤t≤T

||ξ(n+1)
t − ξ(n)

t || �≤ C
∫ T

0
dt ≺ ||ξ(n)

t − ξ
(n−1)
t ||2 �≤ C Mn tn

Γ(n)

which on its turn entitles us to use invoke Borel-Cantelli lemma. Namely if we pick any 0 < ε < 1 and observe by
Čebišev that

P

(
max

0≤t≤T
||ξ(n+1)

t − ξ(n)
t || > εn+1

)
≤ ε−2 (n+1) ≺ max

0≤t≤T
||ξ(n+1)

t − ξ(n)
t ||2 �≤ C

(ε−2M t)n+1

Γ(n+ 1)

then

∞∑
n=0

P

(
max

0≤t≤T
||ξ(n+1)

t − ξ(n)
t || > εn+1

)
<∞

We conclude that

ξ
(n)
t = ξ

(0)
t +

n−1∑
n=0

(
ξ

(n+1)
t − ξ(n)

t

)
n↑∞→ ξt a.s.
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with

ξt = ξo + lim
n↑∞

{∫ t

0
ds b

(
ξ(n)
s , s

)
+
∫ t

0
dsσ

(
ξ(n)
s , s

)
[dws]

}
= ξo +

∫ t

0
ds b (ξs, s) +

∫ t

0
dsσ (ξs, s) [dws]

having used the dominated convergence theorem. It remains now to show that the solution belongs to L(2)(Ω× [0, T ]).
There result follows from bounds similar to the above:

≺
∣∣∣∣∣∣ξ(n+1)

t

∣∣∣∣∣∣2 �≤ 3 ≺ ||ξo|| � +3 ≺
∣∣∣∣∣∣∣∣∫ t

0
ds b

(
ξ(n)
s , s

)∣∣∣∣∣∣∣∣2 � +3 ≺
∣∣∣∣∣∣∣∣∫ t

0
dsσ

(
ξ(n)
s , s

)
[dws]

∣∣∣∣∣∣∣∣2 �
whence

≺
∣∣∣∣∣∣ξ(n+1)

t

∣∣∣∣∣∣2 �≤ 3 ≺ ||ξo|| � +6L2(T + 1)
∫ t

0
ds ≺ 1 +

∣∣∣∣∣∣ξ(n)
s

∣∣∣∣∣∣2 �≤ C̃eC̃t
by recursion for some C̃ > 0. Passing to the limit yields the claim.

Uniqueness

Suppose there is an ξ̃t also satisfying the stochastic differential equation. Then

≺
∣∣∣∣∣∣ξt − ξ̃t∣∣∣∣∣∣2 �=≺

∣∣∣∣∣∣∣∣∫ t

0
ds [b (ξs, s) − b

(
ξ̃s, s

)
] +
∫ t

0
ds [σ (ξs, s)− σ

(
ξ̃s, s

)
][dws]

∣∣∣∣∣∣∣∣2 �
By the same inequalities as above there is a positive constant K > 0 such that

≺
∣∣∣∣∣∣ξt − ξ̃t∣∣∣∣∣∣2 �≤ K ∫ t

0
ds ≺

∣∣∣∣∣∣ξt − ξ̃t∣∣∣∣∣∣2 �
Gronwall lemma (see appendix A) for a function vanishing at the lower boundary allows us to conclude that

ξ̃t = ξt

in mean square. The martingale inequality ensures in such a case that the same equality holds almost surely.

2.1 Example: absence of Lipschitz continuity

Consider the ordinary differential equation:

ξ̇ = Cξ1/3

The field

f = C x1/3

is not differentiable in zero therefore not Lipschitz continuous there. As a consequence the equation has multiple
solutions

ξt =
{

0 t < to
C̃ t3/2 t ≥ to

for arbitrary to.
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3 Solution by iteration

If b and σ are smooth

ξt = ξo +
∫ t

0
ds b(ξs, s) +

∫ t

0
σ(ξs, s)[dws]

= ξo + b(ξo, 0) t+ σ(ξo, 0)[dwt] +
∫ t

0
ds

∫ s

0
db(ξu, u) +

∫ t

0

∫ s

0
dσ(xu, u)[dws]

= ξo + b(ξo, 0) t+ σ(ξo, 0)[dwt] +
∫ t

0
db(ξs, s) (t− s) +

∫ t

0
dσ(xs, s)[wt −ws] (3.1)

We then apply Ito lemma to b and σ and iterate. In such a way the solution is constructed as a power series in t and
wt.

Example 3.1 (1d-linear case). Consider the Ito SDE

dξt =
ξt
τ
dt+ σ ξtdwt (3.2)

we can remove the drift by setting

ξt = ξ̃te
t
τ

The new process ξ̃t is related to the original by a function independent of the Wiener process. Hence, Ito calculus
lemma

d(ξ̃tηt) = (dξ̃t)ηt + ξ̃tdηt+ < dξ̃t , dηt >

(< • , • > is the quadratic co-variation) reduces for

ηt = e
t
τ

to the standard Leibniz rule. We find

d(ξ̃te
t
τ ) = (dξ̃t)e

t
τ + ξ̃t

e
t
τ

τ

The new Ito stochastic differential equation is

dξ̃t = σ ξ̃tdwt

If we apply the recursion equations (3.1) we get into

ξ̃t = ξ̃o + σ ξ̃owt + σ

∫ t

0
dws

∫ s

0
dξ̃s1

= ξ̃o + σ ξ̃owt + σ2ξ̃o

∫ t

0
dws

∫ s

0
dws1 + σ2

∫ t

0
dws

∫ s

0
dws1

∫ s2

0
dξ̃s2

Repeating for an arbitrary number of steps

ξ̃t = ξ̃o + ξ̃o

∞∑
i=1

σi
∫ t

0
dws1

i−1∏
j=1

∫ sj

0
dwsj (3.3)
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We have proved in a previous lecture that∫ t

0
dws1

i−1∏
j=1

∫ sj

0
dwsj = hi(wt, t)

with hi the Hermite polynomial

hi(x, t) =
tn

Γ(i+ 1)
dn

dzn

∣∣∣∣
z=0

e
z x
t
− z

2

2 t =
1

Γ(i+ 1)
dn

dλn

∣∣∣∣
z=0

eλx−
λ2 t
2

Upon inserting in (3.3), we get into

ξ̃t = ξ̃o

{
1 +

∞∑
i=1

σihi(wt, t)
Γ(i+ 1)

}
= ξo e

σwt−σ
2 t
2

and consequently

ξt = ξo e
t
τ
+σwt−σ

2 t
2

The same result is straightforwardly obtained by converting (3.2) to Stratonovich form

dξt =
(

1− σ2 τ

2

)
ξt
dt

τ
+ σ ξt dwt

and by integrating it according to the usual rules of calculus

ξt = ξo e

“
1−σ

2 τ
2

”
t
τ
+σ wt

Appendix

A Gronwall lemma

Lemma A.1 (Gronwall). Let

φ : [0, T ]→ R+ & f : [0, T ]→ R+

and let C0 ≥ 0 a real constant. If for all 0 ≤ t ≤ T

φt ≤ C0 +
∫ t

0
ds fs φs

then

φt ≤ C0e
R t
0 ds fs

Proof. First observe

dφt
dt
≤ ft φt
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φt may vanish, so we cannot divide both side by φt in order to couch the left hand side in the form of a logarithmic
derivative. Instead we set

Φt = C0 +
∫ t

0
ds fs φs

and obtain

dΦt

dt
= ft φt ≤ ft Φt φt ≤ Φt

Then

d

dt

[
e−
R t
0 ds fs Φt

]
≤ 0

implying that

e−
R t
0 ds fs Φt ≤ Φ0 ≤ C0

and therefore (the exponential is strictly positive under current hypotheses)

Φt ≤ C0 e
R t
0 ds fs
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