
1 Introduction

Beside [3] alternative reference for the Ito process are [1], [2] and Varadhan’s lecture notes [4].

2 Martingales and Doob-Meyer decomposition

This section follows [2]. In the last lecture we identified a d-dimensional Ito process as the stochastic differential

dξt = bt dt+ σt[dwt]

σit[dwt] :=
n∑
j=1

σijt dw
j
t

i = 1, . . . , d

j = 1, . . . , n

for bt, σ non-anticipative with respect to the Wiener-process. Alternatively we can write

ξt = ξo +
∫ t

0
ds bs +

∫ t

0
σs[dws]

The right hand side comprises three terms.

• An initial value ξo, eventually deterministic, for the process.

• A bounded variation component

Bt :=
∫ t

0
ds bs

This means that for any vector component i ofB we have

lim
|p|↓0

∑
k

(tk+1 − tk)|Bi
tk+1
−Bi

tk
| =

∫ t

0
dt |Bi| <∞

which implies the vanishing of the quadratic variation.

• A martingale component

M t =
∫ t

0
σt[dwt]

From the properties of the Ito-integral we have in fact:

i Conservation of the average: for any t

≺
∫ t

0
σs[dws] �= 0

since σ is non-anticipating.

ii finite quadratic variation

≺
∫ t

0
σis[dws]

∫ t

0
σjs′ [dws′ ] �=

∫ t

0
dsσiks σ

jk
s < 0

As usual Einstein convention is implied: repeated indices stand for index contraction.
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The representation of an Ito process in the form

ξt = ξo +Bt +M t

is often referred to as the Doob-Meyer representation

Example 2.1 (Exponential martingale). Let us consider the process

ξt = eλwt−
λ2 t
2 ξo (2.1)

by Ito lemma we have

dξt = λ dwt e
λwt−λ

2 t
2 ξo = λ ξtdwt

If we recast the Ito differential into Doob-Meyer form we find

ξt = ξo + λ

∫ t

0
dws ξs

The exponential process does not have bounded variation component. It is therefore a martingale

≺ ξt �=≺ ξo �

if

≺ |ξo| �<∞

3 Stochastic calculus with Hermite polynomials

This section expands example D.3 of chapter 4 of [3].

Proposition 3.1 (Expansion of the transition probability of the Wiener process). We have

e−
(x−y)2

2 t

√
2π t

=
∞∑
n=0

e−
x2

2 t

√
2π t

(y
t

)n
hn (x, t)

where

hn (x , t) =
(−t)n

Γ(n+ 1)
e
x2

2 t
dn

dxn
e−

x2

2 t (3.1)

Proof. The n-th order of the Taylor expansion can be couched into the form

yn

Γ(n+ 1)
dn

dzn

∣∣∣∣
z=0

e−
(x−z)2

2 t

√
2π t

:=
e−

x2

2 t

√
2π t

(y
t

)n
hn (x, t)

whence we can calculate the explicit form of the polynomial hn. Namely

e−
x2

2 t

√
2π t

(y
t

)n
hn (x , t) =

yn

Γ(n+ 1)
dn

dzn

∣∣∣∣
z=0

∞∑
k=0

∫
R
eı px−

t p2

2
(−ı p z)k

Γ(k + 1)
=

yn

Γ(n+ 1)

∫
R
eı px−

t p2

2 (−ı p)n
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Observing that powers of p are generated by taking derivatives with respect to x we get into

e−
x2

2 t

√
2π t

(y
t

)n
hn (x , t) =

(−y)n

Γ(n+ 1)
dn

dxn

∫
R
eı px−

t p2

2

Performing the integral and contrasting the left to the right hand side yields the claim.

The polynomials hn defined by (3.1) are called the Hermite polynomials. It is readily checked that they enjoy the
scaling property

hn(λx , λ2 t) = λnhn(x , t) ⇒ (x ∂x + 2 t∂t)hn(x , t) = nhn(x , t)

Furthermore

Proposition 3.2 (Expected value of Hermite polynomials).

≺ hn (wt + x , t) �=
xn

Γ(n+ 1)
= hn(x, 0) (3.2)

Proof.

≺ hn (wt + x , t) �:=
∫

R
dy hn(y, t)

e−
(y−x)2

2 t

√
2π t

=
(−t)n

Γ(n+ 1)

∫
R
dy

e−
y2

2 t
+x y

t

√
2π t

dn

dxn
e−

x2

2 t

integrating by parts yields the claim.

The reason why the expectation value is preserved is that the differential of Hermite along realizations of the
Wiener process takes the form.

Proposition 3.3 (Stochastic differential of Hermite polynomials).

dhn(wt, t) = dwt∂wthn(wt, t)

Proof. By Ito lemma we have

dhn(wt, t) = dt

(
∂t +

1
2
∂2
wt

)
hn(wt, t) + dwt∂wthn(wt, t)

In order to prove the claim we need to show that(
∂t +

1
2
∂2
wt

)
hn(wt, t) = 0

Such result can be achieved by direct calculation. It is instructive to proceed in a slightly indirect way. For any t > 0

0 =
(
∂t −

1
2
∂2
x

)
e−

(x−y)2
2 t

√
2π t

∞∑
n=0

e−
x2

2 t

√
2π t

(y
t

)n 1
t

(
−n + t ∂t −

t

2
∂2
x + x ∂x

)
hn = −

∞∑
n=0

e−
x2

2 t

√
2π t

(y
t

)n(
∂t +

1
2
∂2
x

)
hn

which implies (
∂t +

1
2
∂2
x

)
hn = 0

as each of these multiply positive definite terms of different order in y.
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We have therefore a probabilistic interpretation of the statistical conservation law

hn(wt + x, t) = hn(x, 0) +
∫ t

0
dwt ∂wthn(wt, t)

From the property of the Ito integral

≺ hn(wt + x, t) �= hn(x, 0) =
xn

Γ(n+ 1)

3.1 Recursion relation and multiple integrals over the Wiener process

Proposition 3.4 (Integrals over Hermite polynomials).∫ t

0
dws hn(ws, s) = hn+1(ws, s)

Proof. Consider the exponential martingale process (2.1). It satisfies

eλwt−
λ2 t
2 = 1 + λ

∫ t

0
dws e

λws−λ
2 s
2

whence

dn

dλn

∣∣∣∣
λ=0

eλwt−
λ2 t
2 =

dn

dλn

∣∣∣∣
λ=0

λ

∫ t

0
dws e

λws−λ
2 s
2

Contrasting the left-hand side with the definition of Hermite polynomials we conclude

dn

dλn

∣∣∣∣
λ=0

eλwt−
λ2 t
2 = tn

dn

dzn

∣∣∣∣
z=0

e
z
t
wt− z

2

2 t = Γ(n+ 1)hn(wt , t)

The right hand side is

dn

dλn

∣∣∣∣
λ=0

λ

∫ t

0
dws e

λws−λ
2 s
2 = n

dn−1

dλn−1

∣∣∣∣
λ=0

∫ t

0
dws e

λws−λ
2 s
2 = Γ(n+ 1)

∫ t

0
dws hn−1(ws , s)

We have therefore proved that

hn(wt , t) =
∫ t

0
dws hn−1(ws , s)

An important consequence is the following. Since

h0(wt, t) = 1

we have that ∫ t

0
dws =

∫ t

0
dws h0(ws , s) = h1(wt, t)

and ∫ t

0
dws1

∫ s1

0
dws0 = h2(wt, t)

or in full generality ∫ t

0
dws1

n−1∏
i=1

∫ si−1

0
dwsi−1 = hn(wt, t)
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4 The Stratonovich integral

This section follows section E of chapter 6 of [3]. We have seen that for

θk = s tk + (1− s) tk−1 ∀ s ∈ [0, 1] (4.1)

the sum

n∑
k=1

wθk (wtk − wtk−1
) =

w2
tn

2
−
∑
k

[
(wtk − wθk)2

2
−

(wθk − wtk−1
)2

2

]
in L2(Ω) converges to ∫ t

0
w(θ)
s dws =

w2
t

2
− t (1− 2 s)

2

Choosing s = 1/2 the second term on the right hand side disappears and we recover the result from ordinary calculus.
The example suggests to define

Fisk-Stratonovich
integral

∫ t

0
dws � ξs := lim

|p(n)|↓ 0

∑
tk∈pn

ξ tk−1+tk
2

(wtk − wtk−1
) (4.2)

where {pn}∞n=0 is a sequence of refining partitions of [0, t]. Note that

ξ tk+1+tk
2

−
ξtk+1

+ ξtk
2

=

ξ
tk+1−

tk+1−tk
2

− ξtk+1

2
+
ξ
tk+

tk+1−tk
2

− ξtk
2

= O(ξtk+1
− ξtk)2

Thus we can equivalently write∫ t

0
dws � ξs := lim

|p(n)|↓ 0

∑
tk∈pn

ξtk+1
+ ξtk

2
(wtk − wtk−1

)

As in the Ito case the limit converges in mean square sense. At variance with the Ito case, the integrand in the definition
(4.2) is anticipating:

≺ ξt � dwt �6=≺ ξt �≺ dwt �= 0

Thus the martingale property of the Ito integral is lost. To appreciate the advantage of the definition consider∫ t

0
dws � ws = lim

|p(n)|↓ 0

∑
tk∈pn

(wtk + wtk−1
)(wtk − wtk−1

)
2

=
w2
t

2
(4.3)

in agreement with the rules of ordinary differential calculus. The example illustrates the general situation.
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4.1 Relation with the Ito differential

Let us consider

ξt = g(χt, t) (4.4)

with

dχt = b(χt, t) dt+ σ(χt, t) dwt (4.5)

then by Ito lemma we can write

dξt = dg(χt, t) = dt

{
∂t + bt ∂χt +

σ2

2
∂2
χt

}
g + dwt σt ∂χtg (4.6)

and use the this result to establish the relation between the Fisk-Stratonovich and the Ito integral. Namely given a
non-anticipating process ηt we can couch the definition of the Fisk-Stratonovich integral into the form∫ t

0
dws � ηs = lim

|p(n)|↓ 0

∑
tk∈pn

{
ηtk−1

(wtk − wtk−1
) +

(ηtk−1
− ηtk)(wtk − wtk−1

)
2

}
In the literature the latter equality is sometimes written in the continuum limit as∫ t

0
dws � ηs =

∫ t

0
dws ηs + 〈η , w〉t

where 〈ξ , w〉t is quadratic co-variation of the processes ξt and wt. The essential point is that in the limit (which
converges in the mean square sense under our hypotheses) the quadratic co-variation receives finite contributions only
from the term proportional to the increment of the Wiener process

dwt ∼ O(
√
dt) ⇒ dw2

t ∼ O(dt)

In such a case if

ηt = f(χt, t)

we find

Stratonovich to Ito

conversion

∫ t

0
dws � f(χs, s) =

∫ t

0
dws f(χs, s) +

1
2

∫ t

0
ds σ(χs, s) ∂χsf(χs, s) (4.7)

In particular for

f(χt, t) = σ(χt, t)∂χtg(χt, t)

we obtain

dwt � [σ(χt, t)∂χtg(χt, t)] =

dwt σ(χt, t)∂χtg(χt, t) +
dt

2
σ(χt, t) ∂χt [σ(χt, t) ∂χtg(χt, t)]

which allows us to write

dξt = dg(χt, t) = dt
{
∂t +

[
b− σ

2
(∂χtσ)

]
∂χt

}
g + dwt � [σ∂χtg] (4.8)

As expected, the right hand side does not include any-longer a second derivative of g, the hallmark of Ito lemma. The
function g is, however, transported by the Stratonovich stochastic differential

dξt = dt

[
bt −

1
2

(σ∂χtσ)t

]
+ dwtσt
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4.2 Examples

• Consider the process

ξt = w2
t

In such a case the role of the process χt of the previous section is played by the Brownian motion itself

χt = wt ⇒ dχt = dwt

i.e. b = 0 and σ = 1 in (4.5). Ito lemma yields

dξt = dg(wt) = 2wt dwt + dt

The differential admits the equivalent Stratonovich representation

dξt = 2wt � dwt

with again χt = wt.

• Consider now

ξt = χ2
t

with

dχt = χt dt+ χt dwt (4.9)

This case corresponds to

b = σ = χt

in (4.5). It follows by Ito lemma

dξt = 3χ2
tdt+ 2χ2

t dwt

On the other hand (4.9) admits the Stratonovich representation

dχt =
χt
2
dt+ χt � dwt

whence

dξt = χ2
tdt+ 2χ2

t � dwt
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