
1 Introduction

The content of these notes is also covered by chapter 4 section A, B and C of [1]. An alternative reference for
Brownian motion and it properties is provided by Varadhan’s lecture notes [2].

2 Partitions

Definition 2.1 (Partition). If I = [x− , x+] ⊂ R is an interval a partition p (subdivision) of I is a finite sequence
{xk}nk=1 of points in I such that

x− = x1 < . . . < xn = x+

Definition 2.2 (Mesh of a partition). The mesh size of a partition p of an interval I = [x− , x+] is

|p| = max
1≤k≤n

|xk+1 − xk|

Definition 2.3 (Refinement of a partition). The refinement of a partition p of the interval I is another partition p′ that
contains all the points from p and some additional points, again sorted by order of magnitude.

3 Quadratic variation

Definition 3.1 (Quadratic (co-)variation). Let {ξt | t ≥ 0} and {χt | t ≥ 0} two stochastic processes. The limit (in
mean square sense)

〈ξ , χ〉t = lim
|p(n)|↓ 0

∑
tk∈pn

(ξtk − ξtk−1
)(χtk − χtk−1

)

is called the quadratic co-variation of the processes. In particular

〈ξ , ξ〉t = lim
|p(n)|↓ 0

∑
tk∈pn

(ξtk − ξtk−1
)2

is called the quadratic variation of ξt.

For the Brownian motion we have

Proposition 3.1 (Quadratic variation of the B.M.). The quadratic variation of the Brownian motion

〈w ,w〉t = σ2 t

in the sense of L2(Ω).

Proof. Set

Qn :=
mn−1∑
k=0

(wtk − wtk−1
)2

we have then

≺ [Qn − (tb − ta)]2 �=
mn−1∑
k l=1

≺
[
(wtk − wtk−1

)2 − σ2 (tk − tk−1)
] [

(wtl − wtl−1
)2 − σ2 (tl − tl−1)

]
�
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For non-overalapping intervals, the averaged quantities are independent random variables with zero average. The only
contributions to the sum come from overlapping intervals:

≺ [Qn − σ2 (tb − ta)]2 �=
mn−1∑
k=1

≺
[
(wtk − wtk−1

)2 − (tk − tk−1)
]2 �= 2σ4

mn−1∑
k=1

(tk − tk−1)2

whence

≺ [Qn − (tb − ta)]2 �≤ 2σ4 (tb − ta) max
k

(tk − tk−1)
maxk(tk−tk−1)→0

→ 0

Some observations are in order

• The finite value of the quadratic variation motivates the estimate

dwt ∼ O(
√
dt)

for typical increments of the Wiener process.

• The finite value of the quadratic variation is a further manifestation of the non-differentiability of the Wiener
process. Namely, the intermediate value theorem implies for a differentiable function

lim
dt↓0

∑
k

|f(tk)− f(tk−1)| ≈
∫ t

0
dt |f ′(t)|

Irrespective of differentiability∑
k

[f(tk)− f(tk−1)]2 ≤ max
k
|f(tk)− f(tk−1)|

∑
k

|f(tk)− f(tk−1)|

so that for a differentiable function∑
k

[f(tk)− f(tk−1)]2 ≤ max
k
|f(tk)− f(tk−1)|

∫ t

0
dt |f ′(t)| maxk(tk−tk−1)→0→ 0

In the case of the Wiener process the finiteness of the right hand side implies

∑
k

|f(tk)− f(tk−1)|
maxk(tk−tk−1)→0

↑ ∞

4 Stochastic integrals

Let f an analytic function

f : R → R

we would like to make sense of the functional of the Wiener process

I =
∫ t

0
f(ws) dws mathematics notation (4.1)
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The formal relation between Wiener process and white noise, is often sometime used to write the above integral as

I =
∫ t

0
f(ws) ηs ds physics notation

It is important to realise that the integral cannot be interpreted as a Lebesgue-Stieltjes integral. Namely take

f(ws) = ws

and suppose to define the integral as∫ t

0
ws dws = lim

n↑∞

n∑
k=1

wθk
(wtk − wtk−1

) (4.2)

As n increases the {tk}nk=1 describe sequences of refining partitions (see appendix 2) of the interval [0, t]. The point
θk is chosen arbitrarily in [tk−1 , tk]:

θk = s tk + (1− s) tk−1 ∀ s ∈ [0, 1] (4.3)

A necessary condition for the interpretation of (4.2) as a Lebesgue-Stieltjes integral to hold true is that the right hand
side must be independent of way θk is sampled. Instead, we find that even the average of the integral does not satisfy
the requirement:

≺
∫ t

0
ws dws �= lim

|p|↓0

n∑
k=1

{
≺ wθk

wtk � − ≺ wθk
wtk−1

�
}

= lim
n↑∞

n∑
k=1

σ2 (θk − tk−1) = lim
n↑∞

n∑
k=1

σ2 s(tk − tk−1) = σ2 s

4.1 Filtration

Definition 4.1 (Filtration). A family {Ft : t ≥ 0} of σ-algebras is called non-anticipating with respect to the family
of σ-algebras {Wt : t ≥ 0} induced by a Wiener process {wt : t ≥ 0} if it satisfies

• Ft ⊆ Ft′ for all t ≤ t′

• Wt ⊆ Ft for all t ≥ 0

• Ft is independent of {Wt′ −Wt : t ≤ t′} for all t ≤ t′.

A non-anicipating family of σ-algebras is also referred to as filtration.

Example 4.1 (Non-anticipative vs anticipative). Let wt a Wiener process for all t ≥ 0, the function

f(t) =


0 if max

0≤s≤t
ws ≤ 1

1 if max
0≤s≤t

> 1

is non-anticpative as it depends on the Wiener process up to the time t when the function is evaluated. On the other
hand for any T > t the function

g(t) =


0 if max

0≤s≤T
ws ≤ 1

1 if max
0≤s≤T

ws > 1

is anticpative as it depends on realizations of the Wiener process for times s posterior to the sampling time t.
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4.2 Ito integral

Let suppose that ξt is a stochastic process satisfying the properties

ii Non anticipating: ξt may depend only on ws with s ≤ t. As a consequence ξt and dwt are independent
variables

≺ ξtdwt �=≺ ξt �≺ dwt �= 0

ii mean square integrability:

≺
∫ t

0
ds ξ2

s �< ∞

For any stochastic process ξt satisfying the above two properties we can define the Ito integral

Ito prescription
∫ t

0
dws ξs := lim

|p(n)|↓ 0

n∑
k=1

ξtk−1
(wtk − wtk−1

) (4.4)

where {pn}∞n=1 is a sequence of refining partitions pn = {tk}nk=0 of the interval [0, t] with mesh size |pn| (see
appendix 2). Note that the approximating sums

In =
n∑
k=1

ξtk−1
(wtk − wtk−1

)

are defined in the Ito prescription by setting s to zero in (4.3). The convergence of (4.4) has to be understood in the
mean square sense i.e.

≺ (In − Im)2 �n,m↑∞→ 0

The hypotheses i, ii (4.4) assumed in the definition imply that

i Ito integrals have zero average

≺
∫ t

0
dws ξs �= 0 (4.5)

ii the mean square integrability property

≺
(∫ t

0
dws ξs

)2

�=≺
∫ t

0

∫ t

0
dwsdws′ ξsξs′ �

=
∫ t

0

∫ t

0
≺ dwsdws′ �≺ ξsξs′ �=

∫ t

0

∫ t

0
dsds′ δ(s− s′) ≺ ξsξs′ �=

∫ t

0
ds ≺ ξ2

s � (4.6)

using the formal relation

dwt = ηt dt

between white noise and Wiener increment. The proof in L2(Ω)-sense of the chain of equalities in (4.6) pro-
ceeds by considering finite approximants to the integral as in the case of the proof of finiteness of the quadratic
variation of the Wiener process. The same method will be outlined below in relation to the proof of Ito lemma.
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In particular for
n∑
k=1

wtk−1
(wtk − wtk−1

) =
n∑
k=1

w2
tk
− w2

tk−1

2
−

n∑
k=1

(wtk − wtk−1
)2

2

upon applying the quadratic variation lemma we find∫ t

0
dwsws =

w2
t

2
− t

2

5 (Döblin-Gih’man-) Ito lemma

Proposition 5.1 (Functionals of the Wiener process). Let

F : Rd × R→ R

a smooth function with bounded derivatives in all its arguments. Let wt be a d-dimensional Wiener process with
diffusion coefficient σ on each component. Then

F (wt, t) = F (0, 0) +
∫ t

0
dws · ∂wsF (ws, s) +

∫ t

0
ds

{
∂sF (ws, s) +

σ2

2
∂2

ws
F (ws, s)

}
Sketch of the proof. Consider the Taylor expansion of F around a point (wt̄, t̄). We have

F (wt̄+h, t̄+ h)− F (wt̄, t̄) = h ∂t̄F (wt̄, t̄) + (wt̄+h −wt̄) · ∂wt̄
F (wt̄, t̄)

+
1
2

(wt̄+h − wt̄)i(wt̄+h − wt̄)j∂wi
t̄
∂
wj

t̄
F (wt̄, t̄) + h (wt̄+h −wt̄) · ∂wt̄

∂t̄ F (wt̄, t̄)

+
h2

2
∂2
t̄ F (wt̄, t̄) +

1
6

(wt̄+h − wt̄)i(wt̄+h − wt̄)j(wt̄+h − wt̄)k∂wi
t̄
∂
wj

t̄
∂wk

t̄
F (wt̄, t̄) + . . .

having adopted Einstein convention on repeated indices. We can use Taylor expansions like the above to evaluate
increments of F on the elements of any partition of [0, t]. By subsequently refining partitions we can in such a way
Adding up the increments we observe that∑

k

{
(tk+1 − tk) ∂tkF (wtk , tk) + (wtk+1

−wtk) · ∂wtk
F (wtk , tk)

}
|p|↓0→

∫ t

0
ds ∂sF (ws, s) +

∫ t

0
dws · ∂wsF (ws, s)

for p the mesh of the partition. We need to show that in the same L2 (Ω) sense in which we defined the Ito integral a
third contribution. Since for some Cp > 0

≺ ||wt+h −wt||p hq �= Cp h
p
2

+q

The only terms which do not vanish asymptotically as the partition mesh tends to zero are those corresponding to

(p , q) = (2 , 0)

We need therefore to study in mean square sense

Qn =
mn∑
k=0

[(wtk+1
− wtk)i(wtk+1

− wtk)j − δijσ2 (tk+1 − tk)]∂wi
tk
∂
wj

tk

F (wtk , tk)

we have
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• mean value: using the independence of the increments

≺ Qn �= 0

• mean square value:

≺ Q2
n �=

mn∑
k ,l=0

≺ ∆ij
k ∆i′j′

l [∂wi
tk
∂
wj

tk

F (wtk , tk)][∂wi′
tl

∂
wj′

tl

F (wtl , tl)] �

with

∆ij
k := (wtk+1

− wtk)i(wtk+1
− wtk)j − δijσ2 (tk+1 − tk)

As for the quadratic variation of the Wiener process, the ∆ij
k for non overlapping intervals are independent

variables with zero mean:

≺ Q2
n �=

mn∑
k=0

≺ ∆ij
k ∆i′j′

k [∂wi
tk
∂
wj

tk

F (wtk , tk)][∂wi′
tk

∂
wj′

tk

F (wtk , tk)] �

= σ4
mn∑
k=0

(tk+1 − tk)2(δij
′
δi
′j + δi

′iδjj
′
) ≺ [∂wi

tk
∂
wj

tk

F (wtk , tk)][∂wi′
tk

∂
wj′

tk

F (wtk , tk)] �

≤ 2σ4|p|
∫ t

0
ds ≺ [∂wi

tk
∂
wj

tk

F (wtk , tk)][∂wi
tk
∂
wj

tk

F (wtk , tk)] �
|p↓0|→ 0

We have so heuristically shown that in mean square sense

mn∑
k=0

(wtk+1
− wtk)i(wtk+1

− wtk)j∂wi
tk
∂
wj

tk

F (wtk , tk)
|p↓0|→ σ2

∫ t

0
ds ∂2

ws
F (ws, s)

and thus completed the sketch of the proof.

6 (Döblin-Gih’man-) Ito calculus

Definition 6.1 (Ito process). We say that ξt for t ≥ 0 is an Ito process if there exist a Wiener motion measure and two
non-anticipative functions At, Bt for all t ≥ 0 such that

ξt = ξo +
∫ t

0
dsAs +

∫ t

0
dwsBs

The generalization to the d-dimensional case is straightforward. Take two non-anticipativeAt andBt respectively
Rd and Rd′×d valued fields

ξt = ξo +
∫ t

0
dsAs +

∫ t

0
dws ·Bs

where now

(dws ·Bs)i :=
d′∑
j=1

Bij
s dw

j
s
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Contrasting the definition with the content of Ito lemma, an immediate consequence is that

F l(wt, t) = F l(0, 0) +
∫ t

0
dsAls +

∫ t

0
dwks B

lk
s

requires

At = ∂tF (wt, t) +
σ2

2
∂2

wt
F (wt, t)

and

Bij
t = ∂

wj
t
F i(wt, t)

The pair (At ,Bt) is referred to as the local coefficients of the Ito process.

Proposition 6.1 (Generalised (Döblin-Gih’man-)Ito lemma). Let ξt a d-dimensiona Ito process with local coefficients
(At ,Bt). Let F a smooth vector field

F : Rd × R+ → Rd̃

with bounded derivatives. Then

ηt = F (ξt, t)

is a d̃-dimensional Ito process with local parameters

Ãlt = ∂tF
l +Ai∂ξi

t
F l +

1
2
BikBjk∂ξi

t
∂
ξj
t
F l

and

B̃lk
t = Bik∂ξi

t
F l
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