1 Introduction

The content of these notes is also covered by chapter 3 section C of [[1]].

2 Properties of the Brownian motion

e Covariance

< wyws == 0% (t A s) := R(t, s) (2.1)

e Stationary increments: for any £,s € R

< (wp —ws)? == o? |t — s

e Characteristic function: fortq < to < t3 < --- < tp,
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3 Karhunen-Loeve representation of the Wiener process

The Karhunen-Logve representation provides us with a convenient deterministic functional orthonormal basis {1y, } - ;,
which will allow us to write the Brownian motion

we: 2 x[0,T] - R

as a series
o
Wy = Z Cnd’n(ﬂ
n=0

Randomness is encoded in the coefficients

T dt
Cn = /0 ? @Z)n(t)wt

which need to form a sequence {c,},- , of independent Gaussian random variable with zero average and variance
determined by the Karhunen-Loeve representation.

Let us consider the space of the Lebesgue square integrable I.%([0, 7)) real functions on [0, 7. This space is an
Hilbert space with respect to the scalar product:

T
<fox= [ Fi0a®  fgel*(0.1)

Proposition 3.1. The covariance R of the Brownian motion defines the kernel of an operator mapping 1.2([0, T)
into itself:

ie.



Proof. The following chain of equalities holds by definition

ol =< rir). R 5= 2] R s)] [ 5 R 56

where

T ds tds T ds
/0 TR(t,s)f(s):a2/0TSf(5)+0'2t/t 7 )

so that by Lyapunov inequality

T s T Js 1/2
R0 < o7 [ Flsel < o1 ([ FIroP)

We conclude

lgl3 < o* T2|I£113

The as an operator kernel R(¢, s) enjoys two further properties

e R(t,s) is positive definite: i.e. for any collection of {¢;};" ; € C and sampling of the arguments {¢;}; , we
have

n
Z CiR(ti, Si)Cj Z 0

ij=1
Namely
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e The kernel is symmetric:
R(t,s) = R(s,t)

These properties of the kernel allows us to invoke

Theorem 3.1 (Mercer). Let R be a continuous symmetric non-negative definite kernel. Then there is an orthonormal
basis {{n}oo o of L*([0,T7]) consisting of eigenfunctions of of the operator

T S
Rl = [ FR(s) )

such that the corresponding sequence of eigenvalues {ry,},, is non-negative. The eigenfunctions corresponding to
non-zero eigenvalues are continuous on [0, T] and R admit the representation

R(t,s) = Z Tn Yn(t) ¥n(s)
n=0



Proof. The theorem is proved at pag. 138 of [2]. It can also be regarded as a consequence of the Hilbert-Schmidt
theorem [3]] ]

In other words the operator specified by R is diagonalizable with discrete spectrum. The idea underlying the
Karhunen-Log¢ve representation is to use the orthonormal basis of eigenvectors to write the Brownian motion as the
L2-convergent series:

= cntn(t) 3.1)
n=0

Namely, if the {c, }, -, are Gaussian independent random variables satisfying
<cp>==0 & <=,
it follows immediately that (3.1)) satisfies all the requirements to be a Brownian motion:

1 Covariance:

< Wt wg == Zrnwn wn( ) (t S)

n=0
ii Independent increments: for ¢; < to < t3 < 14

=< (wt4 —wt3)(wt2 —wtl) b U2ZT‘n[t4 Nito —tg Nty — i3 Nilo + 13 /\tl] =0

n
1ii Gaussian structure of the characteristic function :

L ST S0 ekl ()~ (k1)) s = S SR Mkl (tr) —n (1))}

We use the identity

D Melthn(te) = tn(th-1)] =
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Thus
< et ot oo Cn Ak [P (tk) —tn (tk—1)] P 6_% >k Ak Pn (tr)]?

Now we observe that

Z Tn [Z Ay ¢n(tk)}2 =

n k=1
2
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Finally using the definition of the A; coefficients
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3.1 Explicit construction of the Karhunen-Loeve basis

We need to solve:

T ds
| F RO 0(s) =t

or equivalently
t d T d
/ Sdsazswn(s)-i-U?t/ jwn(s):rnwn(t)
o T e T

The first derivative is

T
02 /t % wn(s) =Tn wn(t) = wn(T) =0

and the second derivative

0.2

Try,

2
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Thus the problem is equivalent to solving the differential equation

0.2

Pn(t) + Try,

Pn(t) =0
with boundary conditions
Un(0) = ¥u(T) = 0
The boundary condition in zero yields (the factor v/2 comes from unit normalization)

2
t
n

Y (t) = V2sin

Imposing the condition for ¢ = T’ gives the “quantization” condition for the eigenvalues:

02T T
—@2n+1) =
- (n+)2

n=201,...

The conclusion is that the explicit Karhunen-Lo¢ve representation of the covariance of the Wiener process is

o0

o2 n n(S
Rit,5) = 32 2Tl

n=0 (n+ %)2 7T2

4 Final remark

An example of concrete application of the Karhunen-Logve representation can be found in [4].
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