
1 Introduction

The content of these notes is also covered by chapter 3 section B of [1].

2 Diffusion equation and central limit theorem

Consider a sequence {ξi}∞i=1 i.i.d. ξi
d= ξ with

ξ : Ω→ {−Dx , 0 , Dx}

with

P (ξ = Dx) = T+

P (ξ = −Dx) = T−

Obviously

≺ ξ �= Dx (T+ − T−)
≺ (ξ− ≺ ξ �)2 �= (Dx)2 [(T+ + T−)− (T+ − T−)2]

are finite as well as moments of any order. If we define

Sn[ξ] =
n∑
i=1

ξi
n

(2.1)

we can apply the strong law of large numbers

P

(
lim
n↑∞

Sn →≺ ξ �
)

= 1

and the central limit theorem

P

x− ≤ Sn− ≺ ξ �√
≺ (Sn− ≺ ξ �)2 �

≤ x+

 n↑∞→
∫ x+

x−

dx g0 1(x)

with

≺ (Sn− ≺ ξ �)2 �= (Dx)2 [(T+ + T−)− (T+ − T−)2]

The central limit theorem can be used to construct the continuum limit of the above random walk. In order to do so,
we define time and the position coordinates according as (i dx , nDt) = (x , t) and we set

T+ =
1 + b+

Dx
σ2

2

T− =
1− b− Dx

σ2

2

Rather than on (2.1) we will focus on

Wn[ξ] := nSn[n]
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for which we get into

lim
n↑∞

n(Dx)2→σ2 t

≺Wn[ξ] �= lim
n↑∞

n(Dx)2→σ2 t

nDx2 b+ + b−
2

= b t :=≺ wt �

and

lim
n↑∞

n(Dx)2→σ2 t

≺ (Wn[ξ]− n ≺ ξ �)2 �=

lim
n↑∞

n(Dx)2→σ2 t

n(Dx)2
[
1 +

b+ − b−
2

Dx

σ2
− (b+ − b−)2 (Dx)2

4σ4

]
= σ2 t :=≺ (wt− ≺ wt �)2 �

Finally upon setting

∆n :=
√
≺ (Wn[ξ]− n ≺ ξ �)2 �

x± :=
x̃±
∆n

(2.2)

we have

lim
n↑∞

n(Dx)2→σ2 t

P (x̃− ≤Wn[ξ]− n ≺ ξ �≤ x̃+ )

= lim
n↑∞

n(Dx)2→σ2 t

∫ x̃+
∆n

x̃−
∆n

dx g0 ,1(x) =
∫ x̃+

x̃−

dx g
0 ,
√
σ2 t

(x) (2.3)

We conclude that the family of random variables

wt : Ω× R+ → R

defined by the limit is distributed according to the probability density:

pwt(x) =
e−

(x−b t)2

2σ2 t

√
2π σ2 t

The characteristic function is

p̌wt(q) = eı q b t−
σ2 t q2

2

and satisfies the equation

∂tp̌wt(q) = −σ
2 q2

2
p̌wt(q) + ı q b p̌wt(q)

which is nothing else than the Fourier transform of the Fokker-Planck equation for constant drift and diffusion coeffi-
cients.

Remark 2.1. It worth emphasizing that the drift coefficient

b =
b+ + b−

2
does not depends upon the walker standstill probability. The fact has an intuitive interpretation from the point of view
of the continuum limit: we are attributing zero probability weigth to Lebesgue zero measure sets.
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2.1 Independence of the increments

Let us consider the difference

Dm[ξ] = Wn+m[ξ]−Wn[ξ] =
m∑

i=n+1

ξi

clearly for any finite n and any events A, B belonging to the σ-algebra induced by Wn+m

P (Wn[ξ] ∈ A ,Dm[ξ] ∈ B) = P (Wn[ξ] ∈ A)P (Dm[ξ] ∈ B)

The property must survive in the continuum limit for n ,m ∈ N tending to infinity: Wn+m[ξ]
(n+m)↑∞→ wt′

Wn[ξ]
n↑∞→ wt

⇒ t′ ≥ t & P (wt′ − wt ∈ A ,wt ∈ B) = P (wt′ − wt ∈ A)P (wt ∈ B)

3 Brownian motion

Definition 3.1 (Stochastic process). A collection of random variables {ξt|t ≥ 0}

ξ : Ω× R+ → Rd

is called a stochastic process.

Realizations of stochastic process are now paths rather than numbers:

Definition 3.2 (Sample path). For each ω ∈ Ω the mapping

t → ξt(ω)

is called the sample path of the stochastic process.

In most applications stochastic processes are characteized by means of the family of all finite dimensional joint
distributions associated to them. This means that for a stochastic process valued on R, for any discrete sequence
{ti}ni=1 we consider the Borel σ-algebra B(Rn) and B1 , . . . , Bn B and consider

Pξt(B1 , t1 , . . . , Bn , tn) ≡ P (ξt1 ∈ B1 , . . . , ξtn ∈ Bn)

The so defined families of joint probability yield a consistent description of a stochastic process

ξ : Ω× R+ → Rd

if the following Kolmogorov consistency conditions are satisfied

i P (Rd, t) for any t

ii Pξt(B1 , t1 , . . . , Bn , tn) ≥ 0

iii Pξt(B1 , t1 , . . . , Bn , tn) = Pξt(B1 , t1 , . . . , Bn , tn ,Rd, tm+1)

iv Pξt(Bπ(1) , tπ(1) , . . . , Bπ(n) , tπ(n)) = Pξt(B1 , t1 , . . . , Bn , tn ,Rd, t)

The above definitions allow us to characterize the Wiener process as a stochastic process:
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Definition 3.3 (Brownian motion). A real valued stochastic process

wt : Ω× R+ → R

is called a Brownian motion or Wiener process if

i w0 = 0

ii the increment wt − ws has Gaussian PDF g
0,
√
σ2(t−s)(x) for all t ≥ s ≥ 0 and σ > 0 a constant diffusion

(volatility) coefficient.

iii For all times

t1 < t2 < . . . ≤ tn

the random variables

wt1 , wt2 − wt1 , . . . , wtn − wtn−1

are independent the process has independent increments).

3.1 Consequences of the definition

Some observations are in order

• It is not restrictive to consider the one dimensional case. The PDF of Brownian motion on Rd is obtained by
multiplying PDF’s

pwt(x) =
d∏
i=1

pwit(xi)

• By i and ii we have that

pwt(x) =
e−

x2

2σ2 t

(2π σ2 t)
1
2

& pwt2−wt1 (x) =
e
− x2

2σ2 (t2−t1)

[2π σ2 (t2 − t1)]
1
2

t2 > t1 (3.1)

By iii The joint probability of wt1 and wt2 − wt1 is

pwt1 ,wt2−wt1 (x1, y) =
e
− x2

1
2σ2 t1

(2π σ2 t1)
1
2

e
− y2

2σ2 (t2−t1)

[2π σ2 (t2 − t1)]
1
2

By definition of probability density we can also write

pwt1 ,wt2−wt1 (x1, y) = pwt1 ,wt2−x1(x1, y) = pwt1 ,wt2 (x1, y + x1)

since

wt2 = (wt2 − wt1) + wt1

Recalling the definition of conditional probability we must also have

pwt1 ,wt2 (x1, y + x1) = pwt2 |wt1 (x1 + y, t2 |x1, t1) pwt1 (x1) ∀x1 , x2 , t2 > t1
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whence

pwt2 |wt1 (x1 + y, t2 |x1, t1) =
pwt1 ,wt2 (x1, y + x1)

pwt1 (x1)
=
pwt1 ,wt2−wt1 (x1, y)

pwt1 (x1)
=

e
− y2

2σ2 (t2−t1)

[2π σ2 (t2 − t1)]
1
2

Finally, upon setting x2 = y + x1 we get into:

pwt2 |wt1 (x2, t2 |x1, t1) =
e
− (x2−x1)2

2σ2 (t2−t1)

[2π σ2 (t2 − t1)]
1
2
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